
Chapter 5

Clustering of Gene Expression

Data

Methods for clustering, or unsupervised classification, have been studied for
many decades. Vast numbers of different algorithms have been proposed (Jain
& Dubes 1988). Clustering methods generally aim to identify subsets (cluster)
in the data based on the similarity between single objects. Similar objects
should be assigned to the same cluster, while objects which are not similar to
each other, should be assigned to different clusters.

Cluster analysis is applied to search for data patterns that may reveal rela-
tionships between individual examples. Frequently, the data structure detected
by cluster analysis can give first insights into the data producing mechanisms.
Clustering can, therefore, be seen as exploratory data analysis. It has become
a popular technique for data mining and knowledge discovery. Clustering is
especially useful if prior knowledge is little or non-existent, since it requires
minimal prior assumptions.

This feature has made clustering to a tool that is widely applied in the anal-
ysis of microarray data, where knowledge of the underlying regulatory networks
has been limited. An important discovery was that the expression patterns of
genes of similar function tend to cluster together. The examination of gene
clusters, therefore, can lead to new knowledge about functions of single genes
as well as about the behaviour of whole genetic networks.
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5.1 Introduction

Microarrays have revolutionized the study of complex genetic networks by mea-
suring the activities of many thousands genes simultaneously. They have be-
come very powerful techniques in the systematic analysis of gene regulation. A
landmark experiment was the study of yeast using microarrays containing all
genes of the yeast genome (DeRisi et al. 1997). It has revealed an unexpected
richness of expression patterns. To reveal these structures, the first step in
data analysis is often the application of clustering analysis. One of its main
purposes is to infer the function of novel genes by grouping them with genes of
well-known functionality. This is based on the observation that genes showing
similar expression patterns (coexpressed genes) are often functionally related
and are controlled by the same regulatory mechanisms (coregulated genes). Ex-
pression clusters are, therefore, frequently enriched by genes of certain functions
e.g. DNA replication, or protein synthesis. If a novel gene of unknown func-
tion falls into such a cluster, it is likely to serve the same functions as other
members of the cluster. This ‘guilt-by-association’ method enables assigning
possible functions to a large number of genes by clustering of coexpressed genes
(Chu et al. 1998). Analysis of cluster structure can further identify the under-
lying mechanisms of metabolic and regulatory networks in the cell (Tavazoie
et al. 1999). It is especially valuable for organism and cell types where little
previous knowledge about their biology exists.

Different cluster algorithms have been applied to the analysis of expression
data: k-means, SOM and hierarchical clustering to name just a few (Tavazoie
et al. 1999, Törönen et al. 1999, Eisen et al. 1998). They all assign genes
to clusters based on the similarity of their expression patterns. The borders
between clusters are hard i.e. genes are assigned to exactly one cluster even
if their expression profile is similar to several cluster patterns. For several
time-course experiments, however, it has been pointed out that there are no
well-defined boundaries between classes of temporal patterns (Cho et al. 1998,
Spellman et al. 1998, Chu et al. 1998). For example, Chu et al. noted that genes
were often highly correlated with the patterns of more than one cluster (Chu
et al. 1998). This might be expected, since genes products frequently participate
in more than on regulatory mechanism to different degrees. The regulation of
a gene is generally not in an ’on-off’, but gradual manner which allows a finer
control of the gene’s functions. A cluster algorithm should reflect this finding by
differentiating how closely a gene follows the dominant cluster patterns. Fuzzy
clustering appears as a good candidate for this task since it can assign genes
degrees of membership to a cluster. The membership values can vary between
zero and one. This feature enables fuzzy clustering to provide more information
about the structure of gene expression data.

A second reason for applying fuzzy clustering is the large noise component
in microarray data due to various biological and experimental factors. A com-
mon procedure to reduce noise in microarray data is the setting of a minimum
threshold for change in expression. Genes below this threshold are excluded
from further analysis. However, the exact threshold value remains arbitrary
due to the lack of an established error model. Additionally, filtering may ex-
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Figure 5.1: Are two or three clusters present? Both numbers of clusters seem
to be correct depending on whether we consider the examples in the upper left
to belong to one or two clusters. Thus, the scale of resolution determines the
number of clusters. Ideally, a clustering method should give insights into the
data structures on different scales.

clude interesting genes from further analysis. Fuzzy clustering isa valuable
approach here since it is noise robust and may not require pre-filtering.

A crucial question is how many clusters can be found in the data? This
is difficult to answer for gene expression data if clusters are not homogenous,
but show sub-structures which can be interpreted as clusters themselves (Chu
et al. 1998). A simplified example is presented in figure 5.1, where the num-
ber of clusters depends on the resolution scale. While hierarchical clustering
indicates the different levels of clustering in the resulting dendrogram, parti-
tional clustering algorithms lack the ability to indicate sub-structures in clus-
ters. Additionally, no relationships between single clusters are indicated by
most partitional clustering methods. Using fuzzy clustering, this drawback can
be overcome, since it allows the definition of a coupling between single clusters.

In the next section, a review of methods for clustering gene expression data
is given. Using fuzzy clustering, we re-analyse the yeast cell-cycle experiment
by Cho et al. (section 2.2.1). After a description of the data pre-processing, the
selection of clustering parameters is addressed. This is followed by a presen-
tation of important features of fuzzy clustering and a comparison of the noise
robustness of fuzzy and k-means clustering. A summary of the main results
closes the chapter.

5.2 Review of Methods for Clustering Genes Based

on Expression Data

This review focuses on methods applied to cluster genes. Clustering can also be
applied to group tissue samples based on their overall gene expression profile.
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While both applications can formally be regarded as equal, the computational
task differs. Clustering of tissue samples is based on the expression values of
thousands of genes and frequently demands the pre-selection of differentially
expressed genes. The challenges in discovering relationships between tissue
samples are discussed in more detail in the next chapter. This is contrasted by
the clustering of genes, which is based on a much smaller number of measure-
ments, usually less than 100.

In the first time-course experiments measuring transcription on a genome-
wide level in yeast, genes were assigned to pre-defined classes. Cho et al. divided
the yeast cell cycle into five phases (early G1, late G1, S, G2 and M) based on a
set of genes which were previously detected to be periodically transcribed (Cho
et al. 1998). Over 400 genes were identified to be cell cycle regulated and
assigned to the five phases. Similarly, Chu et al. used genes previously studied
to define seven expression classes for the analysis of yeast sporulation (Chu
et al. 1998). Genes were classified based on their correlation with the expression
profiles of the classes. Sequences of known or putative regulatory sites were
found by sequence alignment of similarly expressed genes.

Systematic detection of periodically transcribed genes was the goal of the
study by Spellman et al. (Spellman et al. 1998). They analysed gene expres-
sion in yeast cell cultures synchronised by different methods. To detect peri-
odic changes, the data were Fourier-transformed and compared with profiles of
known cell cycle regulated genes. Using this method, over 800 genes were iden-
tified as periodically transcribed and assigned to cell cycle phases. Spellman et
al. noted that no clear boundary existed between categories defined by the cell
cycle phases e.g. genes in the late G2 and early M phase showed a very similar
expression profile.

The study by Eisen et al. can be considered a milestone in the field of gene
expression analysis (Eisen et al. 1998). They introduced cluster analysis to
systematically identify groups of genes with similar expression patterns. Using
hierarchical clustering, they found that genes of similar function cluster together
in yeast and human expression data. The results by Eisen et al. opened the
way for a large variety of clustering methods to be proposed for the analysis of
microarray data.

Using k-means clustering, Tavazoie et al. re-analysed the data by Cho et
al. (Tavazoie et al. 1999). Mapping of genes to functional categories showed
that many expression clusters were significantly enriched by functionally re-
lated genes. Known or novel cis-regulatory motifs were identified by aligning
the up-stream regions of genes assigned to the same cluster. The ‘tightness’
of expression clusters was shown to be correlated with the presence of signif-
icant sequence motifs. ‘Tighter’ clusters tended also to be more enriched by
functionally related genes.

The use of self-organising maps (SOMs) for gene expression analysis was
proposed in two studies (Tamayo et al. 1999, Törönen et al. 1999). SOMs consist
of a grid with pre-defined geometry. The vertices of the grid represent the cluster
centres and are iteratively adjusted based on their distance to the data objects.
As adjacent vertices are moved simultaneously, the use of the grid structure
ensures that clusters with similar expression patterns are mapped to vertices

82



Chapter 5: CLUSTERING

which are close to each other on the grid. Tamayo et al. pointed out that
this clustering structure is favourable for interpretation (Tamayo et al. 1999).
Tamayo et al. used a 6x5 rectangular grid to cluster the yeast cell cycle data.
They detected clusters that closely match those identified by Cho et al. No
recommendation, however, was given on how to select the initial structure of the
SOM. A similar clustering approach based on SOMs was presented by Törönen
et al. analysing yeast gene expression (Törönen et al. 1999). For visualisation
of the results, Sammon’s mapping was used.

Heyer et al. criticised the use of k-means clustering and SOMs for gene
expression analysis as these methods do not allow direct control of the within-
cluster variation (Heyer et al. 1999). If the pre-specified number of clusters is
too small, unrelated expression patterns are clustered together. If the number
is to large, genes with similar expression may be assigned to different clusters.
To overcome this difficulty, Heyer et al. introduced a quality measure defined
by the diameter of the cluster. Based on this measure, an iterative method
termed ‘quality clustering’ was proposed. After selecting a gene to define a
candidate cluster, similar genes are assigned to this cluster until it surpasses
the pre-chosen diameter. This is repeated for all genes. The largest cluster is
determined and its genes excluded from further analysis. For the remaining
genes, new candidate clusters are formed. The iterative process stops if the
cluster size falls below a pre-specified threshold. To achieve a robust measure
of similarity between expressed genes, a jackknife correlation was defined.

Sharon and Shamir introduced a graph-theoretical clustering method termed
CLICK (Sharon & Shamir 1999). Gene expression vectors correspond to ver-
tices in a connected weighted graph. The connecting weights are based on
the similarity of expression vectors. CLICK consists of two steps: First, con-
nections with low weights are iteratively removed. Second, remaining clusters
are merged if they are similar. Using different measures for clustering qual-
ity, Sharon and Shamir showed that CLICK outperformed several other cluster
methods.

Many clustering approaches treat all measurements equally for the grouping
of genes. This is appropriate if groups of genes are coregulated in all measure-
ments. It becomes problematic if genes are coregulated only for a subset of
measurements. The remaining measurements contribute noise to the cluster-
ing process and should preferably be neglected by the clustering procedure.
For this task, Getz et al. proposed coupled two-way cluster analysis (Getz
et al. 2000). Genes and measurements were clustered simultaneously. The gene
expression matrix was partitioned based on the detected clusters. For each
resulting sub-matrix, a further two-way cluster analysis was performed inde-
pendently. By this iterative procedure, clusters of highly correlated genes and
measurements were identified. A related approach called ‘biclustering’ was pre-
sented by Cheng and Church (Cheng & Church 2000). They used a greedy
search algorithm to exclude samples or genes which contribute most to within-
cluster variance. Detected clusters were masked to allow for identification of
further clusters. Masking was performed by replacing the clusters’ expression
values by random numbers.

A problem in cluster analysis is determining the correct number of clusters
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in the data. For hierarchical clustering, the researcher has to decide how many
clusters exist based on the dendrogram. For partitional clustering, the number
of clusters is frequently a parameter which has to be specified a priori. Since
both approaches pose difficulties for the analysis of gene expression data, several
methods have been proposed to determine the optimal number of clusters.

Levine and Domany used a resampling scheme to find stable clustering
(Levine & Domany 2001). Subsets were formed by random splits of the origi-
nal data. Clusters detected in the subsets were then compared to the original
clusters. Clustering stability was determined by calculating the percentage of
genes which were clustered together for the full and resampled data sets. The
number of clusters was considered optimal if it maximised the stability of the
clustering.

Lukashin and Fuchs proposed an alternative approach to selecting the op-
timal number of clusters (Lukashin & Fuchs 2000). It is based on the analysis
of the distribution of distances between pairs of genes. First, a baseline dis-
tribution for a randomised version of the data was calculated. The value for
the lower 5% of the distances was then determined. This gives the thresh-
old for the maximal distance between gene pairs in the same cluster for the
original data. Finally, the cluster number is gradually increased until only a
pre-specified percentage e.g. 5% of the distances within clusters surpasses the
threshold. Lukashin and Fuchs used stimulated annealing for clustering gene
expression data.

To find the statistical significance of dendrograms produced by hierarchical
clustering, Hughes et al. used a bootstrapping techniques (Hughes et al. 2000).
The test statistic was the overall similarity of genes within a cluster. Each
bifurcation of the cluster tree was assigned a p-value by comparing the test
statistic for the original clustering with the ones obtained for randomised data.

A difficulty related to determining the number of clusters is the assessment
of the clustering reliability. This problem was studied by Kerr and Churchill
using bootstrapping cluster analysis (Kerr & Churchill 2001). They based their
analysis on an ANOVA model of the data. The residuals of the model provided
an estimate of the error distribution in the experiment. By resampling the
residuals, simulated data sets were created and their cluster profiles compared
with the original profiles. Variation within the replicated clusterings indicates
the stability of the clusters.

Clustering methods based on probability models offer an alternative to
heuristically motivated methods such as k-means. Model-based clustering as-
sumes that the data values are generated by a mixture of probabilistic distribu-
tions. Yeung et al. used Gaussian mixture models to determine clusters in gene
expression data (Yeung et al. 2001). The model parameters were estimated by
the expectation-maximisation algorithm. To determine the number of clusters,
the Bayesian Information Criterion was used. It indicates how well the data are
fitted by the model. Yeung et al. showed that model-based clustering performs
well for the data sets analysed, which were, however, of low complexity.
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5.3 Data Pre-Processing and Normalisation

In the yeast cell cycle experiment by Cho et al., 6178 genes were monitored at 17
time points over a span of 160 minutes using Affymetrix chips (Cho et al. 1998).
This gave a total of over 100000 measurement values. The expression values for
the time point t = 90 minutes were excluded in our analysis as these data were
considered erroneous (Tavazoie et al. 1999). Further, genes with less than 75%
of the measurements present were excluded. This reduced the number of genes
for the cluster analysis to 6101. To convert the Affymetrix data into ratios,
the measured intensities of each gene were divided by their average values.
The arrays were globally normalised i.e. the total intensity of each array was
linearly scaled to have the same value. To treat positive and negative fold
changes equally, the data were log2-transformed.

Missing values Artifacts such as printing errors, dust and scratches on the
array frequently lead to missing values in microarray experiments. The data
set used by Cho et al. contained over 6000 missing measurement values i.e.
ca. 6% of the expression values were missing. Fuzzy clustering, like many
other cluster algorithms, does not allow for missing values. Different strategies
to overcome this problem exist. Genes might be excluded if some of their
expression values are missing. This, however, would have lead to a dramatic
reduction of the number of genes included in our analysis, since all expression
values were present for less than a third of the genes. Alternatively, we can
estimate the missing values based on present expression data. The following
knn method was applied:

A missing value of gene i at time point t is estimated by the average values
for time t of the 10 nearest neighbouring genes j. The distance was calculated
by

d(gi,gj)
2 =

n

n − m

∑

k

(gik − gjk)
2

where gi is the gene expression vector for gene i, gj is the gene expression
vector for neighbouring gene j, n is the number of arrays in the time-course
experiment and m is the number of measurements which are missing for gene
i or j or both. The sum includes only measurements for which both gene
expression values (gik, gjk) are present.

This procedure exploits the high correlation between genes in expression
data. It assumes that genes which are well correlated for existing measure-
ments are also correlated for missing measurements. In a recent comparison
the knn method for estimating missing values proved to be superior to other
methods (Trojanskaya et al. 2001).

Filtering Most cluster analyses include a filtering step to remove genes which
are expressed at low levels or show only small changes in expression. Different
filtering procedures have been proposed for the analysis of the expression data
analysed here. Heyer et al. excluded all genes with a mean or variance in the
lower 25% of the data (Heyer et al. 1999). Tavazoie et al. included only 3000
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Figure 5.2: Standard deviation of gene expression values before normalisation.
The genes were ordered by their standard deviation.

genes, which showed the largest variation (Tavazoie et al. 1999). Tamayo et al.
reduced the number of genes for analysis to as few as 823 by setting thresholds
for the relative and the absolute change (Tamayo et al. 1999). Inspection of the
different measures proposed, however, revealed that no obvious threshold for
filtering existed. For example, figure 5.2 shows the standard deviation of genes
in the experiment. The transition between low and high values for variation
is smooth and no particular cut-off point is indicated. Thus, the value of a
filtering threshold remains arbitrary. Alternatively, an error model might be
introduced to select significantly expressed genes (section 4.6). This, however,
is difficult since the experiment by Cho et al. lacks replicates.

As no stringent filtering procedure currently exists, we avoided any prior fil-
tering of gene data. This prevents the loss of biologically important information,
as many genes show only small changes in transcription (Hughes et al. 2000).
The inclusion of all genes in the analysis demands, however, a clustering method
which is robust against noise. We demonstrate that this is the case for fuzzy
clustering in section 5.4 and 5.6.

Standardisation The expression values measured for a gene define its gene
expression vector. For cluster analysis, these vectors have to be standardised, as
coexpressed genes frequently show similar changes in expression but may differ
in the overall expression rate. This corresponds to expression vectors of similar
directions, but different length. Since the clustering is performed in Euclidian
space, coexpressed genes may thus be wrongly assigned to different clusters.
Therefore, the expression values of genes were standardised to have a mean
value of zero and a standard deviation of one to ensure that vectors of genes
with similar changes in expression are close in Euclidean space. The Euclidean
distance d is then closely linked to the correlation coefficient r (d =

√
2 − 2r).

The minimal distance d = 0 is achieved for r = 1; the maximal distance d = 2
for r = −1.
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5.4 Determination of the Fuzzy Clustering Parame-

ters and Cluster Validation

To use fuzzy c-means (FCM) for cluster analysis, several parameters have to
be specified. Besides the number of clusters c and the fuzzification parameter
m, users must choose values of the minimal change ε in the objective function
for termination and the maximal number Tmax of iterations (section 3.3.1). For
termination of the clustering process, we specified the minimal change ε = 0.001
and the maximal number of iterations Tmax = 100. Different choices can be
made for the distance metric (‖ · ‖A). Euclidean, diagonal and Mahalanobis
distances are frequently used. In this study we applied the Euclidean metric,
since the observed overall variances for the different time points were similar
and we wanted to treat each time point equally.

The fuzzification parameter m is a crucial clustering parameter since it de-
termines the influence of noise genes on the cluster analysis. For m → 1, it can
be shown that the clustering becomes hard (Bezdak 1981). The FCM algorithm
is then equivalent to the k-means clustering. The membership values are either
one or zero. All genes of a cluster are treated equally for the calculation of the
cluster centre. Increasing the parameter m reduces the influence of genes with
low membership values as can be seen in equation 3.6. Gene expression vec-
tors with large noise content generally have a low membership value, since the
corresponding genes are not well represented by a single cluster, but rather are
partially assigned to several clusters. Selection of the fuzzification parameter m
determines the influence of noise on the clustering process. It also allows inves-
tigation of the stability of clusters. We define stable clusters as clusters which
show only minor changes in their structure with variation of the parameters c
and m. Stable clusters are generally isolated and compact. This is contrasted
by weak clusters which lose their internal structure or disappear if m was in-
creased (section 5.5). For m → ∞, the partition approaches maximal fuzziness.
A gene i is assigned to all clusters equally and the partition matrix becomes
uniform.

Monitoring the clustering results for increasing m therefore gives insights
into the structures of the data. We will use this feature to prevent the detection
of clusters in random data.

Construction of a baseline distribution A major problem with hard clus-
tering algorithms such as k-means or SOMs is that they always assign objects to
a pre-selected number of clusters. Even if the data are random, distinct clusters
are formed. This is illustrated in figure 5.3 which shows clusters detected by
k-means for randomised yeast cell cycle data. The randomisation was achieved
by random permutation of the time order of every gene independently. Data
structures occurring by chance were identified as clusters by k-means. This
feature of hard clustering is problematic, as it can easily lead to false results.

This drawback in hard clustering can be overcome by fuzzy clustering. Since
the fuzzification parameter m controls the sensitivity of the clustering process
to noise, we can adjust m to prevent the detection of clusters in the randomised
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Figure 5.3: Example clusters for k-means (k = 30) clustering of randomised
expression data. The cluster centres are indicated by solid lines.
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Figure 5.4: Example clusters for FCM (m = 1.25, c = 30) clusters of randomised
expression data. The cluster centres were indicated by solid lines. The illus-
trated cluster structures are somewhat misleading, since genes were assigned
to clusters for which they had a maximal membership value. The membership
values showed, however, only minimal variation. The mean membership value
was 0.033 ≈ 1/30 with a standard deviation 1.3 · 10−5. Essentially, all genes
were equally included for the calculation of each cluster centre.

data. For the determination of parameter m, randomised data was clustered
with parameter values between 1.05 and 3.05. The number of clusters was
varied between 2 and 60. Inspection of the FCM clustering results showed that
no clusters are detected for m ≥ 1.25. The partition matrices became uniform
i.e. every gene was approximately equally assigned to all clusters. All genes
were included equally for the calculation of each cluster centre. Therefore, the
cluster centres derived were approximately zero vectors i.e. vectors with all
coordinates equaling zero. Examples are shown in figure 5.4. The fuzzification
parameter was therefore set to m ≥ 1.25 in the following analyses.

Determination of the number of clusters After the selecting the fuzzifi-
cation parameter m, the correct number of clusters has to be determined. For
this task, we gradually increased the cluster number c in the FCM algorithm
and examined the results of the clustering. We observed that the membership
values of genes tend to spread more between clusters as the detected clusters
become more similar for increasing c. Especially for less isolated clusters, the
number of genes with a membership value larger than 0.5 decreased. Finally
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Figure 5.5: Appearance of empty clusters for FCM clustering for increasing
parameter c. Five repeated clustering with random initiations were performed
and the number of non-empty clusters monitored. The fuzzification parameter
m was set to 1.25. The dotted line shows the maximum possible number of
non-empty clusters.

clusters are detected for which none of the genes surpasses the membership value
of 0.5. We call these clusters empty clusters as no gene is primarily assigned to
them. This allows the setting of the parameter c.

We repeatedly clustered the expression data and monitored the number of
non-empty clusters. Figure 5.5 shows that none of the repeated clusterings
produced empty clusters for c ≤ 15. Increasing c leads to the appearance of
empty clusters for some clusterings. For c = 20, at least one clustering did not
result in empty clusters.

A further increase of c always produced empty clusters, although the num-
ber of non-empty clusters also increased. Since empty clusters can be easily de-
tected, the setting of the cluster number is less problematic for fuzzy clustering
compared with hard clustering which does not indicate the quality of clusters.
Clusters identified by FCM can be analysed separately for their stability and
the number of genes with membership values less than 0.5. Increasing the clus-
ter number to c > 20 may even be favourable for the study of local structures
as we discuss in section 5.7.

For the following analysis, we selected c = 20 to prevent the appearance
of empty clusters. The same number of clusters was found by Luskashin and
Fuchs using stimulated annealing (Lukashin & Fuchs 2000). For c = 20 and
m = 1.25, an average of 1560 genes was assigned maximal membership values
less than 0.5 i.e. over 25% of the genes were not primarily assigned to a single
cluster.
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(c) α = 0.7

Figure 5.6: Different α-cores for FCM cluster (c = 20 and m = 1.25): Sub-figure
(a) shows only those genes which were primarily assigned to the cluster.

5.5 Analysis of Information Rich Structures of Fuzzy

Clustering

Differentiation in cluster membership and profiling of cluster cores
For FCM, the cluster centres result from the weighted sum of all cluster mem-
bers and show the overall expression patterns of clusters. The membership
values µik indicate how well the gene expression vector gi is represented by the
cluster centre ck. Low values µik point to a poor representation of gene i by ck.
Large values µik point to a high correlation of gi with ck. Membership values
can also indicate the similarity of vectors to each other. If two gene expression
vectors have a high membership value for a specific cluster, they are generally
similar to each other. This is the basis for the definition of the core of a cluster.
We define that genes with membership values larger than a chosen threshold α
belong to the α-core of the cluster. This overcomes the limitations of hard par-
titional clustering which does not define any relationship between genes within
a cluster. Similarly to hierarchical clustering, the internal structures of clusters
become accessible.

Figure 5.6 shows different α-cores for an expression cluster. Genes can be
differentiated by examining wether they are included in a certain α-core. Fig-
ure 5.6a shows all genes which were primarily assigned to the cluster. This
cluster structure is equivalent to hard clustering. The within-cluster variation
of the gene expression values is large. Local peaks indicated a high background
noise. Setting the α-threshold to 0.5 decreased the variation within the clus-
ter. Genes which were poorly correlated with the overall cluster pattern were
excluded. The periodicity of the remaining genes became more clearly visible.

Increasing the α-threshold to 0.7 led to a decreased number of genes included
in the α-core. Only 28 genes of 282 originally assigned to the cluster remained.
Simultaneously, the average within-cluster variation was reduced from 0.78 for
α = 0 to 0.40 for α = 0.7.

Analysing the α-cores facilitates the identification of underlying networks
as genes can be ranked based on their membership values. The use of the α-
threshold can therefore act as a posteriori filtering of genes. This contrasts
with previously discussed procedures which demand the problematic setting of
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Figure 5.7: Stable clusters maintain their core for increasing m. An example of a
stable cluster is shown for two FCM clusterings (c = 20, m1 = 1.15, m2 = 1.25).
The color bar on the right indicates the colour coding of the membership values.
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Figure 5.8: Weak clusters lose their core for increasing m. The FCM parameters
were c = 20, m1 = 1.15, m2 = 1.25. The membership values as well as the
number of genes are reduced.

a threshold a priori to the cluster analysis. Fuzzy clustering thus avoids the
exclusion of possibly important genes from cluster analysis.

Stability of clusters Besides determining the global fuzziness of data par-
titions, variation of the fuzziness parameter m can be used to gain insight into
the internal structure of single clusters. The choice of the parameter m controls
the fuzziness of the cluster i.e. the distributions of the cluster membership val-
ues. Small m led to a large cluster core with little variation of the membership
functions. When m approached one, the cluster membership values became
either one or zero. Increasing m yielded partitionings with more distributed
membership values. The α-core of the clusters became more differentiated e.g.
a larger α-threshold resulted in smaller cluster cores. By adjusting the param-
eter m, the distribution of membership values can therefore be fine-tuned and
internal cluster structures can be examined. To facilitate this examination, we
colour-coded the α-core of clusters (figures 5.7). Temporal patterns can readily
be detected.

Variation of the fuzzification parameter m also indicate the stability of clus-
ters. Clusters in figures 5.7 and 5.8 illustrate this procedure. Both clusters
seemed to have a well-defined α-core for m = 1.15. Differences appeared, how-
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Figure 5.9: Clusters with periodic gene expression patterns: The labelling of the
clusters is based on the peak of gene expression. Periodic clusters had generally
large α-cores. The FCM parameters were c = 20 and m = 1.25.
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Figure 5.10: Clusters with aperiodic expression patterns: These clusters were
generally weaker than the periodic clusters detected. FCM parameters were
c = 20 and m = 1.25.

ever, for m = 1.25. For the stable cluster in figure 5.7, most genes retained
their large membership values, whereas the membership values decreased con-
siderably for the weak cluster in figure 5.8. Additionally, the number of genes
assigned to the strong cluster stayed approximately the same. This is contrasted
by the weak cluster which lost genes for larger m.

By continually increasing m, it is possible to rank clusters according to
their stability. Biologically, this may give indications of how strongly genes are
coregulated in the underlying genetic networks.

Periodicity of clusters The clustering process yielded two types of clusters.
The first type consisted of clusters with periodic expression patterns (figure 5.9).
The clusters are usually labelled according to their peak time in the phases of
the cell cycle (G1, S, G2, M). Generally, these clusters showed a high stability
and were enriched with genes required for functioning of the cell cycle.

The second group of clusters shows a variety of aperiodic patterns (fig-
ure 5.10). The occurrence of these clusters may be related to initial condi-
tions in the time-course experiment. For synchronisation of the cell culture,
temperature-sensitive cells were arrested in the late G1 phase. Lowering the
temperature to a permissive range might have led to specific response patterns
of genes which were revealed by clustering. Several of the aperiodic clusters
showed only low stability. This may point to a high background noise or weak
coregulation of genes in the clusters.
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Figure 5.11: Percentage of gene pairs which clustered together for original and
‘noisy’ data. Derivation of mean values and error interval were based on five
clusterings of independently generated ‘noisy’ data sets. The percentages for a
membership value x give the fraction of gene pairs clustered together with both
genes having a maximal membership value x ± 0.05 for the original clustering.

5.6 Noise Robustness

Filtering procedures aim to reduce noise, but may lead to a loss of valuable
information. We therefore included all genes in the clustering analysis. Fuzzy
clustering is a favourable method for such an approach, as it indicates gene
expression vectors which should be considered as noisy.

The previous sections showed that FCM assigns membership values to genes
based on the similarity of their expression to the overall pattern of the cluster.
Expression vectors with low membership values may thus considered as noisy.
To test this hypothesis, we analysed the stability of fuzzy clustering against
increased noise. For this task, random Gaussian noise was added to the gene
expression data. The following formula was used:

g̃i = gi + 0.5 · N(0, 1)

where gi is the original expression vector of gene i, g̃i is the expression vector
with added noise and N(0, 1) is the standard normal distribution.

The ‘noisy’ gene expression data was clustered and the results compared to
the clustering of the original data. To evaluate the stability of fuzzy clustering,
we calculated the percentage of pairs of genes which fall in the same clusters
for both clusterings. Ideally, gene pairs for the original clustering should also
be found for the clustering of the ‘noisy’ data. This is, however, only partially
the case for the data analysed here. K-means clustering, which was used for
comparison, assigns on average only 34% of the gene pairs to the same cluster.
This can be improved by fuzzy clustering, since it can differentiate gene pairs
based on their similarity of expression in the original clusters. Pairs with high
membership values for the original cluster are more likely to be clustered to-
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gether for noisy data as shown in figure 5.11. Less than 30% of the pairs are
clustered together again if both genes had membership values of less than 0.3
for the original cluster. Over 70% of pairs, however, were clustered together
if both genes had membership value of 0.85 or higher. Cluster cores obtained
by high α-threshold are therefore more likely to reflect the ‘noise-free’ cluster
structure.

5.7 Global Clustering Structures

An interesting feature of fuzzy clustering is the overlap or coupling between
clusters. Coupling Vkl between cluster k and cluster l can be defined by

Vkl =
1

N

N
∑

i=1

µikµil

where N is the total number of expression vectors. The coupling indicates how
many genes are shared by two clusters. Clusters which have a low coupling show
distinct overall patterns. If the coupling is large, clusters are more similar. The
coupling V defines thus a similarity measure for pairs of fuzzy clusters.

This allows the analysis of global clustering structures obtained by FCM,
since relationships between clusters can be examined. Figure 5.12 shows the
overall clustering structure for three different settings of cluster number (c =
12, 18, 24). For c = 12, the coupling between clusters was generally weak (fig-
ure 5.12-I). Several isolated clusters were produced. An example of such an
isolated cluster is the G1 cluster in figure 5.12d. It can be considered a stable
cluster, since it remains isolated with increasing c (figure 5.12e). This is con-
trasted by the G2 cluster which was split into two sub-cluster (figure 5.12a,b,c).
Both clusters are strongly coupled, as the overall pattern is similar. Note that
two G2 sub-clusters show also some differences. The sub-cluster in figure 5.12b
has a dominant expression peak during the first cell cycle, whereas peaks in
both cell cycle are of similar amplitude for the cluster in 5.12c. The mem-
bership values for the second cluster were lower, so it can be considered as a
weaker cluster. This demonstrates that subtle differences can be revealed by
sub-clustering of fuzzy partitions.

If the cluster number was increased further (c = 24), genes tended to be
assigned to several clusters (figure 5.12-III) The coupling between the clus-
ters, thus, became stronger and no isolated cluster remained. Additionally, a
larger parameter c led to empty clusters which can be, however, easily detected.
Empty clusters usually showed strong coupling to many other clusters, as they
were poorly isolated and less compact.

5.8 Summary

Fuzzy clustering includes advantages of partitional and hierarchical clustering.
As with partitional clustering method, fuzzy clustering is based on the overall
structure allowing for more robust clustering. Additionally internal cluster
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Figure 5.12: FCM sub-clustering: Three clusterings (I,II,III) for c = 12, 18, 24
were analysed. To visualise the global structure of the cluster space, we used
PCA to project the cluster centres in two-dimensional space. The principal
components were derived for clustering III. The strength of coupling of two
clusters is represented by the width of connecting line between them. Sub-
figures (a)-(e) shows the core structures for several example clusters. Sub-figure
(g) shows the colour encoding of the membership values.
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structures are produced. Relationships between genes within a cluster as well
as between clusters can be defined and visualised. This facilitates the discovery
of knowledge, as more information about the data structure is obtained. K-
means clustering lacks these features, since no relationships between clusters
are given by the k-means method. Hierarchical clustering defines relationships
between clusters in a dendrogram, but it is based on local data features and
may not give the best representation of the overall data structure.

We applied fuzzy c-means clustering to yeast cell cycle data. Although we
did not filter the data for background noise, fuzzy clustering was able to assign
genes to known periodic and aperiodic clusters. These clusters display an inter-
nal structure: Expression vectors of a large membership value were generally
found near the centre of the clusters. Expression vectors with a large noise level
received a small membership value and contributed less to the determination of
the cluster centres. Noise can therefore be reduced a posteriori by determining
the α-cores of clusters to exclude ‘noisy’ genes.

Noise robust clustering methods such as FCM are especially desirable, if
changes of expression are small or restricted to a subset of genes. For example,
we applied fuzzy clustering to study the genome-wide response to the induced
expression of a single gene (Dunbier et al. 2001). Although changes in expression
were generally small, fuzzy clustering was able to detect cores of subtle clusters
while neglecting most genes which contributed noise. Subtle data structures can
also be expected for experiments with limited amount of target RNA, which
is often the case for studies of human tissue samples. These data frequently
contain a high background noise.

Many cluster analyses are based on a specific setting for clustering param-
eters (section 5.2). Here we followed an more flexible approach: After deter-
mining the range of appropriate parameter values, we explored the dependency
of the results on the parameter settings. Different settings of FCM parame-
ters c and m can reveal different features of the data structure. The analysis
showed that variation of c leads to clustering on different resolution levels. If a
small parameter c is chosen, clusterings indicate the global data structure i.e.
only the main clusters are detected. Larger c results in the detection of local
structures, but it may also produce artifacts such as empty clusters.

Variation of the fuzzification parameter m offered easy identification of
stable clusters. Alternatively, resampling techniques can be used (Levine &
Domany 2001, Kerr & Churchill 2001). These approaches are, however, com-
putationally intensive. For example, Kerr and Churchill reported that their
bootstrapping analysis of yeast sporulation data required several hours on a
conventional lab computer. Although this procedure might deliver valuable
information about the clustering reliability, it is prohibitive for many current
research procedures. Biologists frequently require interactive tools for data
analysis. Different parameter settings and pre-processing methods may need
to be tested to discover new biological knowledge. Such procedures are facili-
tated by computationally inexpensive analyses of cluster stability based on the
variation of fuzzy parameter m.

For the cluster analysis presented here, we used Euclidean distance for as-
sessing the similarity between genes. The expression values derived from differ-
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ent measurements are treated equally. However, genes may be correlated only
for a subset of measurements. For this case, the use of more complex distance
measures is preferable. One possibility is the replacement of the Euclidean
by the Mahalanobis distance derived from the full covariance matrix (equation
7.2). Such approaches are intended to detect ellipsoid clusters (Gustafson &
Kessel 1979). This may be favourable for gene expression analysis as it in-
dicates the correlation of genes within a cluster for each measurement. High
correlation corresponds to a small cluster diameter for the measurement. Low
correlation leads to large diameters. This correspondence may facilitate the
identification of experimental conditions for which genes are coregulated and,
thus, the identification of underlying regulatory processes.

One major challenge in cluster analysis is determining the number of cluster
in data sets. In this study, we explored the internal cluster structures to select
the number of clusters. Alternatively, objective functions can be used. These
functions should reach an optimum if the correct number of clusters is chosen.
We applied this approach to a smaller version of the gene expression data set
analysed here (Futschik & Kasabov 2002). Several objective functions were
compared using original and model-based data. The results can be found in
appendix B.2. Pre-specification of the numbers of clusters can be avoided alto-
gether if evolving clustering methods are used. Examples of such methods are
evolving self-organising maps (ESOMs). During iterative clustering, new clus-
ter centres are created and connected to neighbouring centres. ESOMs were
successfully applied to identify known and putative novel regulatory sequences
in the yeast genome (Futschik et al. 2000).

The clustering methods used to date have been restricted to a one-to-one
mapping: one gene belongs to exactly one cluster. While this principle seems
reasonable in many fields of cluster analysis, it might be too limited for the study
of microarray data. Genes can participate in different genetic networks and are
frequently controlled by a variety of regulatory mechanisms. For the analysis of
microarray data, we can therefore expect that single genes will belong to several
clusters. This can be accommodated by fuzzy clustering, since it can assign a
gene to several clusters. A difficulty is, however, the distinction between genes
which belong to several clusters and ‘noisy’ genes which are generally distributed
between several clusters by fuzzy clustering. For this distinction, a filtering step
a priori to the clustering might be necessary, although it would lead to a loss
of information.

A major challenge in the future is the analysis of complex data sets. Se-
quence information and function annotations of genes might be included in
the analysis. Simultaneous clustering of genes based on these different types
of information may reveal new relationships between genes. One difficulty to
overcome is the definition of a similarity measure. Sequence information or
categorical data such as functional annotations have to be treated differently to
continuous gene expression data. Additionally, information about the samples
may be included in the analysis of gene expression data. An example of such
incorporation is supervised classification of tissue samples, which is presented
in the following chapters.
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