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Abstract  

We present in this study two novel normalization schemes for cDNA microarrays. They are based on iterative local re-

gression and optimization of model parameters by generalized cross-validation. Permutation tests assessing the effi-

ciency of normalization demonstrated that the proposed schemes have an improved ability to remove systematic errors 

and to reduce variability in microarray data. The analysis also reveals that without parameter optimization local regres-

sion is frequently insufficient to remove systematic errors in microarray data.  

 

Background 
Microarrays have been widely used for the study of gene ex-

pression in biological and medical research. They allow the 

simultaneous measurement of the expression of thousands of 

genes in cells. However, microarrays do not assess gene ex-

pression directly, but only indirectly by monitoring fluores-

cence intensities of labeled target cDNA hybridized to 

probes on the arrays [1]. The first step in the analysis of mi-

croarray data is, therefore, the transformation of fluorescence 

signals into quantities of gene expression. This includes sev-

eral data pre-processing procedures; e.g. excluding artifacts 

and correcting for background intensities. The signals also 

have to be adjusted for differences in dye labeling, fluores-

cence yields, scanning amplification and other systematic 

variability in the measurement. Although this so-called nor-

malization procedure is only an intermediate step in the 

analysis, it has a considerable influence on the final results 

[2]. Assessment of the efficiency of a chosen normalization 

method should therefore be an integral part of every nor-

malization procedure. 

 

Important and widely used microarray platforms are spotted 

cDNA microarrays consisting of probes that spatially or-

dered on a rigid surface. Probes for cDNA arrays are gener-

ally PCR products derived from cDNA clone sets and are 

spotted on the array using a set of pins [1]. To measure gene 

expression by cDNA microarrays, RNA samples are reverse 

transcribed to cDNA and labeled with fluorescent dyes. The 

labeled target cDNA is then hybridized to the microarray 

probes. To control variability due to variable spot size and 

concentration of arrayed PCR product, cDNA microarrays 

arrays are generally co-hybridized with two samples, one of 

which serves as reference sample. The two samples for a 

cDNA array are labeled by different dyes (e.g. Cy5, Cy3) 

with distinct optical properties. Pairing the signal intensities 

of both samples for each spot aims to eliminate the variabil-

ity of the spotting procedure. The calculated ratio of signal 

intensities for each spot delivers a measure for fold changes 

in gene expression. However, raw fluorescence ratios are 

frequently misleading. The corresponding fold changes 

might reflect experimental biases rather than changes in gene 

expression.  

 

A well-known experimental bias for cDNA arrays is the so-

called dye bias referring to the systematic error that origi-

nates from using two different dyes. Dye bias is most appar-

ent in self-self hybridization experiments where identical 

samples are labeled by two different dyes and hybridized on 

the same array. It could be expected that ratios of spot signal 

intensities vary around one. However, intensity-dependent 

deviations from such behavior have frequently been ob-

served [3,4]. These deviations can be related to a variety of 

experimental factors such as differing labeling efficiencies, 

fluorescence quantum yields, background intensities, scan-

ning sensitivity, signal amplification and total amount of 

RNA in the samples [1,4,5]. Besides intensity-dependent dye 

bias, other types of dye bias have been reported [5-8]. 

 

Normalization aims to correct for systematic errors in mi-

croarray data. A variety of normalization methods has been 

proposed for two-color arrays. (For a recent review, see ref. 

[9]). One of the first methods proposed to correct for dye 

bias was global linear normalization which assumes that the 

total fluorescence in both channels is equal [10]. Based on 

this assumption, a normalization constant can be derived 

and employed to adjust the fluorescence intensities of the 

two channels. However, recent reports have shown that this 

procedure is insufficient to correct for non-linear dependen-

cies of spot intensities and fluorescence ratios [4,6,11]. Sev-

eral normalization methods have been developed to over-

come this shortcoming of global normalization [6-8,11]. 

They commonly regress fluorescence ratios with respect to 

spot intensities in a non-linear fashion. Some of these local 

regression methods have been further extended to correct 

for spot location-dependent dye bias [6,7].  

 

Although non-linear normalization procedures have been 

able to reduce systematic errors, an optimal adjustment of 

these normalization models to the data has not been dis-

cussed. Current methods are based on default parameter 

values and leave it to the researchers to adjust the normali-
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zation parameters. Instructions on how to optimize parame-

ter settings is generally not given. Optimization of parame-

ters is, however, crucial for the normalization process. We 

show in our study that systematic errors in cDNA microar-

ray data exhibit a large variability between and even within 

experiments. This requires an adjustment of the model pa-

rameters to the data. A set of normalization parameters of 

fixed value is frequently insufficient to correct experimental 

biases.  

 

In this study, we introduce two normalization schemes 

based on iterative local regression and model selection. The 

underlying relations between experimental variables and 

gene expression changes were derived from an explicitly 

formulated hybridization model. Both normalization 

schemes aim to correct for intensity- and location-dependent  

dye bias in cDNA microarray data. For model selection, we 

applied generalized cross-validation (GCV) which has com-

putational advantages compared to standard cross-

validation. The efficiencies of correction for dye bias of dif-

ferent normalization schemes were compared using permu-

tation tests for two independently generated cDNA microar-

ray data sets. Several statistical measures were used to as-

sess the variability and reproducibility of results obtained by 

different normalization methods. Finally, the normalized 

fold changes of multiple genes were compared to externally 

validated fold changes for a third microarray experiment.  

 

 

Results 
 

Hybridization Model 
A first step in the analysis of microarray data is the devel-

opment of a hybridization model relating intensity of fluo-

rescent signals to mRNA abundance. The model should de-

scribe the influence of experimental parameters on the data 

variability and include error terms. Explicitly modeling the 

relation between signal intensities and changes in gene ex-

pression can separate the measured error into systematic and 

random errors. Systematic errors may be corrected in the 

normalization procedure, whereas random errors cannot be 

corrected, but have to be assessed by replicate experiments. 

Removal of systematic errors is important, since they limit 

the accuracy of the measurement, whereas random errors 

limit its precision. 

 

Our hybridization model applies to two-color arrays com-

monly consisting of a red (Cy5) and green (Cy3) fluores-

cence channel. The model relates the measured spot fluores-

cence intensity to changes in the labeled transcript abun-

dances in which we are interested. Its explicit derivation can 

be found in the Methods and Materials section. Specifically, 

the model relates the ratios Ir/Ig of spot signal intensities 

(Ir/g: spot fluorescence intensity in red/green channel) with 

the ratios Tr/Tg of labeled transcript abundance (Tr/g: abun-

dance of transcript labeled by red/green dye). The relation 

has the following form: 

 

M - ( )ϑκ  = D + ε    [1] 

 

where M is the log fluorescence intensity ratio (M=log2 

Ir/Ig) , D is the logged ratio of transcript abundance 

(D=log2Tr /Tg) and ε represents the random error. The term 

κ  is an additive factor that can depend on a set of experi-

mental variables ϑ  e.g. spot intensity and location. In our 

model, )(ϑκ  can be seen as a term for systematic errors. 

Using relation [1], we can derive D from M up to the ran-

dom error term ε once we know ( )ϑκ . The factor ( )ϑκ  is 

generally calibrated by exploiting the relation [1]. Depend-

ing on the assumptions about the experiment, we can pro-

ceed with different normalization methods. 

 

Assuming κ is constant and the majority of assayed genes 

are not differentially expressed, the ratios can be linearly 

scaled to an average value of one. This leads to linear nor-

malization. If κ  depends on the fluorescence intensity, it 

may be derived from the signal ratios assuming symmetry 

of the logged fold changes D and error term ε. The factor 

( )ϑκ  can then be calculated by a local regression of M with 

respect to the fluorescence intensity. This procedure can be 

performed using all or a selected subset of genes and is fre-

quently called intensity-dependent normalization. In the ex-

periments analyzed, we found that the measured spot inten-

sity ratios showed not only intensity-dependent, but also 

spatial bias across the array. We introduce, therefore, two 

normalization schemes that simultaneously correct for dye 

bias due to intensity and spatial location. 

 

Normalization schemes 
Two normalization schemes were developed to determine 

the normalization factor ( )ϑκ  in the hybridization model 

(relation [1]). They are based on iterative local regression 

and incorporate optimization of model parameters. Local 

regression is performed using LOCFIT which is based on 

the same computational ideas as popular lowess method 

[12,13]. However, it differs from lowess in that its imple-

mentation offers more flexibility to the user. For local fit-

ting, LOCFIT (as well as lowess) requires the user to choose 

a smoothing parameter α that controls the neighborhood size 

h. The parameter α specifies the fraction of points that are 

included in the neighborhood and thus has a value between 

0 and 1. Larger α values lead to smoother fits. Additionally, 

the setting of scale parameters s is necessary for a local re-

gression with two or more predictor variables. These pa-

rameters provide the scales of the predictor variables for the 

fitting procedures. The parameter s can be of arbitrary value.  

 

For normalization by LOCFIT, therefore, model parameters 

α and s have to be chosen. The choice of model parameters 

for local regression is crucial for the efficiency and quality 

of normalization. To optimize the model parameters, we use 

a cross-validation procedure. Since conventional leave-one-

out cross-validation becomes computationally prohibitive 

for this task, we used GCV which approximates the leave-

one-out method [14]. GCV is computationally less expen-

sive to perform, since it does not require multiple construc-

tions of regression models based on partial data, as standard 

cross-validation does.  

Both normalization schemes aim to correct for systematic 

errors linked with spot intensity and location. The first pro-
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cedure leaves the scale of log intensity ratios M unchanged, 

whereas the second procedure includes an adjustment of the 

scale of M. The notation is as follows: A= 0.5 (log2 Ir + 

log2Ig) – geometric mean of the fluorescent intensities of 

both channels; X - spot location on array in the X direction; 

Y - spot location on array in the Y direction, Aα  - smooth-

ing parameter for local regression of M with respect to A, 

XYα - smoothing parameter for local regression of M with 

respect to spatial coordinates X and Y, Ys - scale parameter 

allowing a different amount of smoothing in Y-direction 

compared to smoothing in X-direction. 

 

Optimized local intensity-dependent normalization (OLIN) 

1. For a set of smoothing parameter Aα , local regression 

of M with respect to A is performed generating a set of 

regression models. 

2. The regression models are compared by GCV. The 

model with *
Aα  resulting in the minimum GCV crite-

rion is chosen. The optimal fit *
A

M
α

(A) corresponds to 

a normalization factor ( )Aκ  in equation [1]. 

3. *
A

M
α

(A) is subtracted from M generating an intensity 

normalized M: M ← M - )(* AM
Aα

 

4. For a set of smoothing parameter XYα  and a set of 

scale parameter Ys , local regression of M with respect 

to X and Y is performed. 

5. The resulting models are compared by GCV. The opti-

mal fit )(** AM
YXY sα

 corresponds to a normalization fac-

tor ( )YX ,κ  in equation [1]. 

6.  )(** AM
YXY sα  is subtracted from M generating a spa-

tially normalized M: M ← M- )(** AM
YXY sα  

7. Steps 1-6 are repeated, unless maximal number of itera-

tions N is reached. If the maximal number of iterations 

is reached, M is the normalized log intensity ratio. 

 

Optimized scaled local intensity-dependent normalization 

(OSLIN) 

1. OLIN is performed. 

2. For a set of smoothing parameter α and a set of scale 

parameter s, local regression of abs(M) with respect to 

X and Y is performed.  

3. The resulting models of step 2 are compared by GCV. 

The model with α* and s* producing in the minimum 

GCV criterion is chosen and an optimal fit abs
sM **α  pro-

duced. 

4. M is locally scaled by abs
sM **α : 'M  ← M/ abs

sM **α  

5. The global scale of 'M  is adjusted, so that total varia-

tion of M remains constant:        

                 ''M  ← 'M  
)'var(

)var(
*

M

M
 

6. ''M  is the normalized log intensity ratio. 

We applied our hybridization model and normalization 

schemes to microarray data of two independent spotted 

cDNA microarray experiments. In the first experiment, gene 

expression in two colon cancer cell lines (SW480/SW620) 
was compared. The SW480 cell line was derived from a 

primary tumor, whereas the SW620 cell line was cultured 

from a lymph node metastasis of the same patient. Sharing 

the same genetic background, these cell lines serve as an in 

vitro model of cancer progression [15]. The comparison was 

direct i.e. without using a reference sample. cDNA derived 
from SW480 cells was labeled by Cy3; cDNA derived from 

SW620 was labeled by Cy5. The SW480/620 experiment 

consisted of four technical replicates. In the second experi-

ment (apo AI), gene expression in tissue samples from eight 

apo AI knock-out and eight control mice was studied. Cy5-

labelled cDNA from each tissue sample was co-hybridized 
with a Cy3-labelled reference sample consisting of pooled 

cDNA from the control mice. Hence, a total of 16 cDNA 

microarrays comprise the apo AI experiment. Technical rep-

licates were missing. Further information and references re-

garding the experiments can be found in the Methods and 

Materials section.  

The effects of the normalization schemes are illustrated here 

for a chosen microarray (slide 3) of the SW480/620 experi-

ment. The first step of normalization is, however, the identi-

fication of systematic experimental variability in the data. 

 

Identification of systematic errors: intensity- and 

location-dependent dye bias 
Visual inspection of different plot representations of the 

data pointed to two major types of systematic errors: inten-

sity- and location-dependent dye bias. Although visual in-

spection lacks the stringency of statistical analysis, it pro-

vides an important first tool to detect artifacts in microarray 
data. 

 

[FIGURE 1] 

 

Popular representations are plots of Cy5 (Ir) versus Cy3 (Ig) 

intensities on linear or log scale.  To illustrate the effect of 
the normalization procedures, however, the use of trans-

formed log intensities is preferable [4]. In so called MA-

plots the log ratio M = log2(Ir/Ig)= log2(Ir) -log2(Ig) is plot-

ted against the mean log intensities A= 0.5(log2(Ir)+ 

log2(Ig)) Although MA-plots are basically only a 45o rota-
tion with a subsequent scaling, they reveal intensity-

dependent patterns more clearly than the original plot. MA-

plots also introduce a measure for the spot intensity A, 

which was used in our normalization schemes. Figure 1a 

presents the MA-plot for the raw data of slide 3. Clearly, it 

shows a general non-linear dependence of log ratios M on 
spot intensity A. For low intensities, M is biased towards 

negative values, which is generally the case for arrays of the 

SW480/620 experiment. This is contrasted by MA-plots of 

the apo AI experiment, where log ratios are generally biased 

towards positive values for low spot intensities (see figure 3 

in additional material). The differing characteristics of this 
dye bias may be caused by differences in labeling or scan-

ning protocol used in the two experiments. Additionally to 

standard MA-plots, we found that it can be favorable to 

smooth the MA-plot by calculating the average value of M 
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within a moving window along the intensity scale. Such 

-AM plots frequently display the dependence of M on A 

more clearly (see figure 2 in additional material).  Besides 

intensity-dependent bias, the MA-plot in figure 1 also re-

vealed saturation effects for spots of high intensity.  Ratios 

corresponding to spots with saturation in one or both chan-

nels should be treated with care, as a recovery of the unsatu-

rated intensities is generally not possible (see also hybridi-

zation model section in Methods and Materials). To avoid 

this difficulty, saturation should be prevented by adjustment 

of scanning parameters.  Alternatively, a multiple scanning 

procedure can be applied [16].    

 

Less frequent than the Ir-Ig-plots or MA-plots is the repre-

sentation of log ratios based on the corresponding spot loca-

tion. This type of plot, termed here MXY-plots, offers, how-

ever, a valuable tool for assessing the quality of hybridiza-

tion as well as the subsequent normalization. MXY-plots 

show the log ratios M with respect to the spot location on 

the array. Positive M are represented as red squares, whereas 

negative M are shown as green squares. The MXY-plot for 

the raw data of slide 3 can be found in figure 1b. Large ar-

eas show a tendency towards positive M (e.g. lower left 

side). For slides of both experiments, MXY-plots point to 

the existence of spatial bias. Whereas spatial bias was vari-

able across different slides of the SW480/620 experiment, it 

was more consistent for slides of the apo AI experiment (see 

figures 4 and 5 additional material). Alternatively to MA-

plots, the average value M of neighboring spots can again be 

used instead of M for plotting. These -XYM plots fre-

quently display spatial artifacts more clearly than MXY-

plots (see figure 2 additional material). 

 

In contrast to intensity-dependent dye bias, the origin of 

spatial bias is less clear. Possible reasons for the observed 

spatial bias might be spatial inhomogeneities of hybridiza-

tion, uneven slide surfaces or unbalanced scanning proce-

dures [1]. Schuchhardt et al. and Yang et al. suggested a ra-

tio bias linked to the use of different pins [5,6]. In this case, 

a block-wise bias would be apparent, which we did not ob-

serve. In our experiment, the spatial dye bias seemed to be 

continuous across arrays. Of course, one explanation for the 

uneven spatial distribution is that it reflects actual biological 

variability. For example, the lower left side of the array in 

figure 1b could be enriched with spots corresponding to up-

regulated genes. This, however, seems to be unlikely as the 

print-order of spots in the SW480/620 experiment did not 

follow functional categories of genes. Even if genes are 

grouped on the used microtiter plates based on their func-

tions, the spotting procedure applied for cDNA arrays leads 

to an even distribution of those genes across the array. 

Moreover, the spatial patterns of log ratios M differed be-

tween replicate arrays of the SW480/620 experiment. If they 

were specific for the print layout of the probes, similar pat-

terns in all arrays would be expected. Other arguments also 

point against a biological source of the observed intensity-

dependent and spatial dye bias for the experiments analyzed 

here. First, log ratios close to zero can be expected for 

empty control spots in the SW480/620 experiment. How-

ever, a large number of empty control spots with low fluo-

rescence signals due to non-specific hybridization had con-

sistently large negative log ratios. They would be falsely 

detected as significant if no data normalization was applied 

[17]. Second, only a small number of genes is expected to 

be differentially expressed in the apo AI experiment [6]. 

Therefore, both MA- and MXY-plots should show log ratios 

close to zero for the vast majority of spots.  

 

Besides visual inspection, we employed permutation tests to 

detect intensity-dependent and spatial dye bias. The tests 

determined the significance of observing a median log ratio 

M  within a spot intensity or location neighborhood as in-

troduced in the Methods and Materials section. The number 

of neighborhoods with significant M for FDR = 0.01 can be 

found in tables 1 and 2. For spot intensity neighborhoods, a 

symmetrical window of 50 spots was chosen, whereas a 5x5 

window was chosen as the spot location neighborhood. For 

slide 3 of the SW480/620 experiment, testing the depend-

ency of log ratio M on spot intensity A revealed that 1138 

spot neighborhoods (or 27% of all neighborhoods) had a 

significantly large positive or negative median log ratio. 

Testing for location-dependent dye bias, 837 neighborhoods 

(20%) were detected as significant.  

 

A simple but popular method for normalizing cDNA mi-

croarray data is global linear normalization. However, linear 

normalization leads only to a vertical shift along the M-axis 

in the plots (see figure 1 in the additional material). Thus, 

the intensity- and location-dependent bias remained appar-

ent. This was confirmed by the results of the permutation 

tests: 988 spot intensity and 815 spot location neighbor-

hoods were detected as significant. This demonstrates that 

linear normalization was insufficient to remove the observed 

dye and spatial bias  

 

 

Local intensity-dependent normalization 
Inspection of the MA- and MXY-plots showed that the rela-

tions between log ratio M and spot intensity A and between 

log ratio M and spot location (X, Y) are non-linear. In our 

hybridization model, the normalization factor κ should 

therefore be a function of A as well as X and Y: 

 

 

Mi -κ(A,X,Y) = Di + εi     [2] 

 

If we combine the logged fold change D i and error term ε i 

to a random variable ζi which is assumed to be symmetrical 

distributed around zero, we get 

 

Mi = κ(A,X,Y) + ζi      [3] 

 

 

Since this relation is of the same form as equation [10], we 

can apply a local regression model to capture the intensity 

and location dependence of M. The residuals of the regres-

sion provided the logged fold changes D up to an error term 

and were used for the MA- and MXY-plots. The assumption 

that variable ζi is symmetrically distributed has to taken with 

caution, since it is based on two requirements: i) Most genes 
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arrayed are not differentially expressed or the numbers of 

up- and down-regulated genes are similar; ii) the spotting 

procedure did not generate an spatial accumulation of up- or 

down-regulated genes in localized areas on the array. Both 

requirements have to be assessed for each experiment indi-

vidually. Based on the discussion in the previous section, 

we believe that both requirements are fulfilled for the data 

sets analysed in this study.  

 

[FIGURE 2] 

 

To examine the influence of model selection on final nor-

malization results, we first conducted the same normaliza-

tion procedure as OLIN but without parameter optimisation 

by GCV. Instead, we used default values for the model pa-

rameters. This provides a ‘baseline’ model termed LIN 

which we compared to the optimised models OLIN and 

OSLIN. A default value of 0.5 was used for fitting parame-

ters αA and αXY.  The scaling parameter sY was set to 1. The 

iterative procedure was maintained for LIN to ensure self-

consistency of results, since we regress step-wise with re-

spect to intensity A and location (X,Y). The number of itera-

tions was set to three. The results are visualized in figure 2. 

The MA-plot data normalized by LIN showed that the re-

siduals are centred around zero (figure 2a). The considerable 

bias of log ratios M for low spot intensities A was removed. 

This was confirmed by testing normalized log ratios for in-

tensity-dependent bias. No spot intensity neighbourhood 

with a significant median log ratio was detected (table 1). 

 

However, careful inspection of the MXY-plot shows that the 

spatial bias was only partially removed, as spatial patterns 

were still visible (figure 2b). The permutation tests also re-

vealed that the distribution of M is not balanced across the 

array. 78 spots had neighbourhoods with a significant large 

median log ratio (table 2). The result indicates that local 

(spatial) features exist in the data, which were not appropri-

ately fitted by LIN. This points to the importance of model 

parameter optimisation, especially for location-dependent 

normalization. 

 

 

 

Optimised local intensity-dependent normalization 
To improve efficiency of normalization, we conducted 

OLIN with model optimisation by GCV. Three parameters 

(αA, αXY, sY) had to be optimised during each iteration. Pa-

rameters (αA, αXY) determine the proportion of data used for 

local intensity-dependent and spatial regression of log ratio 

M, respectively. They control the smoothness of fits. Choos-

ing accurate parameter αA and αXY is crucial for the quality 

of the regression. Too large parameter values result in a 

poor fit where local data features are missed; too small val-

ues lead to overfitting of the data. Two extreme cases might 

illustrate the importance of parameter αA and αXY: If we 

choose a value of one, all data points are included in the lo-

cal regression. Although the weight function tricube W used 

by LOCFIT forces larger weights to be put on neighbouring 

points, the fit becomes increasingly linear. The other ex-

treme case is the use of a diminutive parameter value which 

leads to fitting of every point independently of its 

neighbourhood. Overfitting of the data occurs and the re-

siduals are subsequently underestimated. Besides smoothing 

parameters αA and αXY, OLIN demands the setting of scaling 

parameter sY . This is especially important if spatial patterns 

of log ratio M vary on differing scales across the array. 

GCV was used to determine the optimal setting of model 

parameters. For αA and αXY, a parameter range of 0.1 to 1 

was tested. For sY , values between 0.05 and 20 were com-

pared. The number of iterations was set again to three. If 

more iterations were performed only minor changes in the 

outcome of normalization were observed indicating that 

self-consistency of normalization was reached. 

 

[FIGURE 3] 

 

Inspection of the MXY-plot revealed that the optimised lo-

cal intensity-dependent normalization was able to correct for 

the spatial bias (figure 3b). Spots with positive and negative 

log ratio M were evenly distributed across the slide. The pat-

terns of spatial bias across the array were no longer appar-

ent. Similarly, the residuals were well balanced around zero 

in the MA-plot (figure 3a). The results of the statistical tests 

underlined these findings. No significant neighbourhoods 

were found testing for intensity-dependent dye bias and only 

one neighbourhood remained significant testing for spatial 

bias (tables 1 and 2) 

 

[FIGURE 4] 

 

The GCV procedure only approximates the prediction error 

of standard cross-validation. To test if this approximation is 

accurate for the microarray data analyzed, we compared the 

GCV estimates with the estimates produced by 5-fold cross-

validation. Although GCV is considerably less computa-

tionally demanding, it reproduces estimates of the computa-

tionally intensive 5-fold cross-validation generally well (see 

figure 4). The αA values selected by GCV ranged from 0.1 

to 0.7 for the SW480/620 experiment and between 0.2 and 

0.7 for the apo AI experiment. Smaller values produced 

overfitting of data; larger values yielded underfitting. For 

the third iteration, an αA value of 1 was generally selected 

resulting in an approximately linear fit. Optimization of spa-

tial regression parameters αXY and sY showed a more com-

plex behavior and varied between experiments and slides. 

 

Although OLIN leads to an even spatial distribution of posi-

tive and negative log ratios M, visual inspection of figure 3b 

indicates that the variability of log ratios might be unbal-

anced across the array. This can also be assessed by permu-

tation tests. In the same manner as for spatial bias detection, 

we derived the number of neighborhoods with significant 

median abs(M) values. The results can be found in table 1 of 

the additional material. For slide 3 of SW480/620 experi-

ment, 25 spot neighborhoods were detected as significant 

using FDR=0.01. Therefore, it may be favorable to adjust 

the scale of log ratios M locally. 
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Optimized scaled local intensity-dependent nor-

malization  

 
[FIGURE 5] 

 
If we can assume that the variability of log ratios M should 

be equal across the array, local scaling of M can be per-

formed. As in the previous section, the validity of these as-

sumptions has to be carefully checked for each array ana-

lyzed. The underlying requirement is again random spotting 

of arrayed genes. Since we believe this requirement is ful-

filled for our experiments, we applied optimized local scal-

ing within the OSLIN scheme. The local scaling factors are 

derived by optimized local regression of the absolute log 

ratio M. The range of regression parameters tested by GCV 

is [0.1,1] for smoothing parameter α
 
and [0.05,20] for scal-

ing parameter sY. The resulting MA- and MXY-plots for 

slide 3 are presented in figure 5. The variability of log ratios 

M appears to be even across the array. This is consistent 

with the result of the corresponding permutation test: No 

significant spot neighborhood was detected (see table 2 in 

additional materials). 

 

 

Slide-wise comparison of normalization schemes 
The normalization methods proposed in this study yielded 

different results. To choose the optimal method, the effi-

ciency of normalization in removing systematic errors has to 

be compared. Besides the methods presented above, we in-

cluded three previously proposed normalization methods 

based on lowess regression and implemented in the Biocon 

ductor software package [6,21]: i) Global intensity-

dependent normalization (global lowess) which regresses 

log ratios M with respect to spot intensity A; ii) Within 

print-tip group normalization (P-lowess) which regresses M 

with respect to A for every print-tip group independently iii) 

Scaled within-print-tip group normalization (S-lowess) 

which scales log ratios M for each print-tip group after P-

lowess is applied. Note that the smoothing parameter α for 

these methods is constant and the default value of 0.4 was 

used.  

 

[FIGURE 6] 

 

The results of the comparison are examined in detail here 

for slide 1 of the apo AI experiment. The corresponding 

MA-plots can be found in figure 3 of the additional material. 

Although linear normalization led to an overall balanced 

distribution of M, it was insufficient to remove the intensity-

dependent dye bias. The non-linear methods applied were 

generally able to correct for intensity-dependent bias. Figure 

6 presents the MXY-plots for slide 1 of the apo AI-

experiment. For global linear normalization, the correspond-

ing MXY-plot indicates that this method is insufficient to 

remove spatial artifacts on the array. Easily noticeable 

stripes of positive or negative log ratio remained. Spots near 

the right edge of slide 1 show a considerable bias towards 

positive log ratios. Note that these spatial patterns do not 

correlate with the sub-grid defined by the 4x4 print-tips. 

Application of global lowess normalization failed to remove 

these spatial artifacts. This can be expected, since the global 

lowess method does not incorporate any special normaliza-

tion. A reduction in spatial bias can be seen for P-lowess, S-

lowess and LIN which all include spatial normalization. 

However, spatial patterns remain prominent. For P-lowess 

and S-lowess, this indicates that they are not able to correct 

for spatial artifacts that are not correlated with print-tip 

groups. For LIN, it points to underfitting of the data, and 

thus the necessity of parameter optimization. Inspection of 

the MXY-plots for OLIN and OSLIN confirms that this was 

indeed the case: Location-dependent dye bias were absent in 

both plots. Additionally, the MXY-plot for OSLIN shows an 

even variability of log-ratios across the array.  

 

To assess the validity of the findings based on visual inspec-

tion, the efficiency of normalization was also examined by 

permutation tests (tables 1 and 2). For 1750 spots, a signifi-

cant intensity neighborhood was detected if no normaliza-

tion was applied. Most significant spot neighborhoods could 

be found at low spot intensities. Global linear normalization 

even led to a slight increase in number of significant 

neighborhoods. All methods incorporating local intensity-

dependent normalization performed with similar efficiency. 

For P-lowess, S-lowess, OLIN and OSLIN, no spots with 

significant neighborhoods were detected, whereas 18 re-

mained for global lowess and 15 for LIN. Testing for spatial 

bias, we found 1173 spot neighborhoods with significant 

large log ratios if no normalization was applied. Linear and 

global lowess normalization increased the number of spa-

tially biased neighborhoods. P-lowess, S-lowess and LIN 

reduced the number of significant neighborhoods, although 

only with a limited efficiency (P-lowess: 913, S-lowess: 

491, LIN: 755). A considerable reduction of spatial bias was 

achieved by OLIN: 100 neighborhoods were detected as 

significant after normalization. OSLIN showed the best per-

formance. Only one spot neighborhood remained signifi-

cant.  

[FIGURE 7] 

 

Besides giving an indication about the efficiency of nor-

malization, the testing procedure applied also enabled us to 

identify regions of dye and spatial bias. This is illustrated in 

figure 7. Spots are represented by red squares if their 

neighborhood has a significant positive median log ratio M. 

Correspondingly, spots are represented by green squares if 

their neighborhood has a significant negative median log 

ratio. By varying the level of FDR, the grade of significance 

can be assigned. This approach enables a stringent localiza-

tion of significant experimental bias. Figure 6 shows, for 

example, that spots close to the right edge are especially af-

fected by spatial artifacts. 

 

[TABLE 1+2] 

 

Although the number of significant neighborhoods varied 

between slides and experiments, the results of the compari-

son undertaken for slide 1 of the apo AI experiment remain 

generally valid for the other slides analyzed (table 1 and 2). 

Linear normalization was unable to remove intensity- and 

location-dependent dye bias. Global lowess corrected for 

intensity-dependent, but not for spatial bias. P-lowess, S-
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lowess and LIN performed well in the correction for inten-

sity-dependent bias, but were less efficient in correcting for 

spatial dye bias. For most slides, OLIN and OSLIN showed 

the highest efficiencies in removing both types of systematic 

error. 

 

An alternative, and computationally less expensive, way to 

examine intensity- and location-dependent bias is the corre-

lation of the log ratio M with average M  in the spot’s 

neighborhood [5]. Assuming that log ratios of neighboring 

spots are uncorrelated, a correlation close to zero can be ex-

pected. A large positive correlation, however, indicates the 

existence of bias. Successful normalization, therefore, 

should remove the correlation of log ratios of neighboring 

spots. We conducted this type of correlation analysis for 

each arrays independently. Spot intensity and location 

neighborhoods were defined as before. The results can be 

found in the in tables 2 and 3 of the  additional material. We 

present and discuss here the average correlation coefficients 

for the two experiments analyzed (table 3). For the SW 

480/620 experiment, the average Pearson correlation of a 

spot’s log ratio M and the median log ratio M  of spots in 

its intensity neighborhood was 0.50. Whereas linear nor-

malization lead to exactly the same correlation coefficient, 

the non-linear methods compared yielded a correlation coef-

ficient close to zero. Correlating the log ratio M of spots 

with the median log ratio M  of their spatial neighborhood 

resulted in a correlation of 0.53 for raw data. Linear nor-

malization again yielded the same correlation. Global low-

ess slightly increased the correlation. P-lowess, S-lowess 

and LIN achieved a considerable, but limited, decorrelation. 

Only OLIN and OLIM resulted in correlation coefficients 

close to zero. The same analysis was applied to the apo AI 

experiment with a similar outcome. The coefficients for spa-

tial correlation were, however, generally larger, indicating a 

more prominent spatial dye bias.  

 

Experiment-wide comparison of normalization 

schemes 
In the ideal case, results derived by replicated arrays should 

be the same. In practice, however, variable experimental 

conditions lead to random and systematic changes in the 

outcome. Normalization aims to correct for systematic er-

rors, and thereby to increase the consistency of outcome. To 

assess this capacity, we calculated total variation of log ra-

tios M between replicated arrays for the SW 480/620 ex-

periment (table 3). The total variance of raw log ratios M 

was var(M)=927. This is reduced to 659 by linear normali-

zation and to 455 by global lowess. P-lowess, S-lowess and 

LIN performed similarly and further reduced the total vari-

ance. A minimum total variance of 163 was achieved using 

OLIN. This is a reduction of variance by over 80% com-

pared to raw data. This analysis was not possible for the apo 

AI experiment, since only biological, but no technical, repli-

cates were included. A reduction of variability between bio-

logical replicates by normalization, however, cannot be as-

sumed.  

 

[TABLE 3] 

 

A related measure of consistency is the overall correlation 

between arrays. Random error, however, may interfere with 

this analysis. Since log ratios of spots at low intensity can be 

expected to be highly affected by random error, spots in the 

lower third of the intensity distribution were excluded. 

Based on the remaining two thirds of the data, the average 

pair-wise correlation r  of log ratios M between all four 

slides was 0.46 for raw data as well as for linear normaliza-

tion. A slight increase was achieved by global lowess ( r = 

0.50). Using methods incorporating spatial normalization, 

we obtained a considerable improvement. P-lowess and S-

lowess produced the same correlation coefficients ( r = 

0.59). LIN and OSLIN yielded further increase in correla-

tion. The highest correlation was achieved by OLIN with 

r =0.67.  

 

The main goal of the SW480/620 experiment was the identi-

fication of differentially expressed genes. Appropriate data 

normalization should facilitate detecting these genes. For 

means of comparison, we used a one-sample t-test. Since 

multiple tests are performed, p-values obtained were subse-

quently adjusted by Bonferroni-correction. This produced a 

conservative estimate of significance. Normalization was 

found to have a considerable impact on this outcome of the 

significant test; the number of significant genes varied up to 

a factor of five between different methods (table 3). Without 

normalization, only 26 genes were detected as significant. A 

maximum of 129 significant genes was found after applica-

tion of OSLIN. Scaling generally had a positive effect on 

the number of significant genes. For both methods incorpo-

rating scaling (S-lowess, OSLIN) more genes were found to 

be significant compared with the corresponding method 

without scaling (P-lowess, OLIN). This may indicate that 

scaling facilitates the detection of differential expression. 

 

A prominent example illustrating the impact of normaliza-

tion on the significance of genes was given by the results for 

tissue inhibitor of metalloproteinases type 3 (TIMP-3). For 

raw data of the SW480/620 microarray experiment, the p-

value was 0.52. The use of linearly normalized data resulted 

in a reduced p-value of 0.27. A borderline significance was 

achieved using global lowess, P-lowess and S-lowess 

(p=0.022, 0.019, 0.015). The effect of parameter optimiza-

tion was clearly demonstrated by the comparison of signifi-

cance after application of LIN or OLIN/OSLIN.  Whereas 

the p-value of TIMP-3 was 0.089 for LIN, it was considera-

bly reduced for OLIN and OSLN (p=0.009, 0.007).  Con-

sisting with the overall trend, scaling (by S-lowess or 

OSLIN) increased the significance. Down-regulation of 

TIMP-3 in SW620 compared to SW480 cells was independ-

ently validated by Northern plotting [18]. Since TIMP-3 in-

hibits enzymes (metalloproteinases) required for invasion, 

reduced expression of TIMP-3 is conjectured to contribute 

to the invasive potential of SW620 cells [19]. 
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Internal validation of normalization results by 

analysis of replicated control spots 

 
[TABLE 4] 

 

As the previous sections revealed, selection of smoothing 

parameter is especially crucial for removing spatial artifacts 

in the experiments analyzed. The MXY-plots showed gen-

erally more complex patterns than corresponding MA-plots. 

This was reflected in the comparison of normalization re-

sults. Whereas all local regression methods applied in this 

study performed similarly in removing intensity-dependent 

bias of log ratios M, permutation tests indicated that meth-

ods without parameter optimization were insufficient to re-

move spatial bias. To validate this conclusion, we compared 

the variation of M of replicated spots for the SW480/620 

experiment (table 4). These control spots were spatially dis-

tributed across the array. Under ideal circumstances, the 

spatial location should not influence the corresponding 

value of M and thus variation of M should be minimal. 

However, a considerable effect of spot location was detected 

for all three types of replicated spots. Although all normali-

zation schemes including spatial correction procedures 

could reduce the variability of M, their performance differed 

consistently for the three types of replicated spots. P-lowess 

reduced the variance of M on average by 39% compared to 

global lowess that does not incorporate spatial normaliza-

tion. However, the corresponding OLIN procedure based on 

optimized parameter selection clearly outperformed P-

lowess. Compared to global lowess, it yielded an average 

reduction of var(M) by over 60%. A similar result was ob-

tained comparing normalization schemes that included scal-

ing (S-lowess, OSLIN). The average reduction var(M) was, 

however, lower relative to the corresponding schemes with-

out scaling. In the case of replicated Cot-1 control spots, S-

lowess even increased the variability of M. Altogether, 

analysis of the included control spots supports the conclu-

sion that parameter optimization can be crucial for the qual-

ity of normalization. 

 

External validation of normalization results by 

comparison of microarray and qPCR data 
We showed in the previous section that model selection can 

considerably improve the consistency of data within a mi-

croarray experiment. However, the crucial question to ask 

(and as one reviewer correctly pointed it out) is whether the 

methods introduced can provide greater precision of the ac-

tual biological changes occurring.  To address this valid 

point, we re-analyzed   the microarray experiment by Iyer et 

al. [20]. In their study the temporal response of gene expres-

sion in fibroblasts to serum was measured by spotted cDNA 

microarrays representing over 8600 human genes. The 

changes in expression were recorded for 12 time points 

ranging from 15 min to 24 hours after serum stimulation. 

Iyer and co-workers confirmed the temporal expression pat-

terns of five genes (IL-8, COX2, Mast, B4-2 and actin) by 

quantitative polymerase chain reaction (qPCR). This addi-

tional data enabled us to compare the results of normaliza-

tion methods used with an external standard for multiple 

genes at multiple conditions.  For this comparison, the cor-

relation of qPCR-based logged fold changes with microar-

ray-based logged fold changes was calculated. Using the use 

of the log-scale was motivated by the results of the fibro-

blast study showing a good overall correlation of logged 

fold changes derived by both methods (see figure 3 of refer-

ence [20]). Any improvement in the correlation is especially 

desirable regarding time series experiments where clustering 

is commonly used to identify co-expressed genes. As most 

clustering algorithms are based directly or indirectly on cor-

relation as measure of similarity, the correlation of microar-

ray data with actual biological transcriptional changes is of 

crucial importance.  

 

[FIGURE 8] 

 

We first normalized again all microarrays using the methods 

to be compared. MA- and MXY-plots indicated regions of 

intensity-dependent and spatial bias for the microarrays used 

in the study. Several of these plots are presented in figure 8 

of the supplementary material. After normalization of the 

data, the Pearson correlation between qPCR-based logged 

and microarray-based logged fold changes was calculated. 

The largest differences between normalization methods 

were obtained for COX2 (figure 8). Whereas the correlation 

of logged fold-changes was only 0.56 for raw data, it in-

creased to 0.60, 0.64 and 0.64 using LOWESS, P-LOWESS 

and S-LOWESS, respectively. The correlation was further 

improved to 0.70 by OLIN. However, the most considerable 

increase was observed for data normalized by OSLIN. A 

correlation coefficient of 0.86 was obtained. Remarkably, 

the relatively weak correlation for COX2 was already noted 

by Iyer and colleagues. They attributed this observation to a 

“localized area on the corresponding array scan resulting in 

an underestimation of the expression ratio” (see note 10 in 

reference [20]). The result indicates that optimized normali-

zation methods can correct for such artifacts at least par-

tially. For the other genes, the differences between methods 

were less prominent, as the correlation of qPCR- and mi-

croarray-based fold changes was already strong (above 0.7) 

for raw data. The overall comparison, however, shows that 

only methods with model selection could improve the corre-

lation of microarray data with the external standard (table 

3). Methods without model selection did not yield an in-

crease in correlation compared the correlation obtained for 

raw data.  The comparison demonstrates that optimized 

normalization can lead to greater precision of microarray 

data and to a better correlation of measured fold changes 

with the actual biological changes in expression.  

 

 

Discussion 
Microarray measurements are affected by a variety of sys-

tematic experimental errors limiting the accuracy of data 

produced. Such errors have to be identified and removed 

before further data analysis is conducted. Several ap-

proaches for the identification of intensity-dependent and 

spatial dye bias were developed in this study. The most ba-

sic is the visual inspection of MA- and MXY- plots. Alter-

natively, -AM and -XYM plots can be examined. Statisti-

cally more stringent, but also computationally more expen-
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sive, are permutation tests detecting regions of significant 

bias in microarray data. Although permutation tests have 

frequently been used to assess the significance of differen-

tial gene expression, to our knowledge, their use to detect 

artifacts in cDNA microarray data has not previously been 

proposed. The analysis showed, however, that they can be a 

valuable tool for identifying regions of dye bias. 

 

Normalization aims to correct for experimental bias. A 

popular class of normalization methods is  based on local 

regression, since they are flexible and straightforward to 

use. They have become the method of choice for many re-

searchers and have been implemented in numerous freely 

available or commercial microarray data-analysis systems 

e.g. Bioconductor [21], MIDAS [22], SNOMAD [23] and 

GeneTraffic [24]. Other methods, such as ANOVA models, 

often require statistical expertise in their interpretation and 

construction [25,26]. One unresolved challenge in using lo-

cal regression methods has been, however, the choice of re-

gression parameters. This has generally been left to the user 

with only default values given. For example, a variety of 

smoothing parameters α have been suggested without fur-

ther evaluation of their effects on normalization e.g. 0.4 by 

Yang et al. [6], 0.5 by Kepler et al.[11], 0.5/0.7 by Colan-

tuoni et al.[7], 0.7 by Yuen et al.[27]. As our analysis, how-

ever, demonstrates, the use of such default parameters can 

severely compromise the efficiency of normalization. 

 

To improve quality of normalization, we developed two 

schemes incorporating iterative local regression and model 

selection. We based our normalization schemes on an ex-

plicitly formulated hybridization model linking the amount 

of labeled RNA to the observed fluorescence intensities. 

The basic goal is modeling the relation between response 

variable and a set of predictor variables. In our case, the re-

sponse variable is the log fluorescence intensity ratio M and 

the predictor variables are spot intensity A and spot location 

(X,Y). To determine the influence of experimental variables 

on the measurement results, we use an iterative procedure 

alternating between local regression of M with respect to A 

and local regression of M with respect to X and Y. The itera-

tive scheme ensures self-consistency of the step-wise re-

gression procedure. Residuals of the local regression were 

interpreted as corrected fold changes. This allows a separa-

tion of the systematic errors due to intensity and spatial ef-

fects from biological changes in expression. To increase the 

accuracy of the normalization model, we optimized the 

model parameters. GCV was applied for parameter optimi-

zation since it is computationally of advantage for large data 

sets compared with standard cross-validation. The  regres-

sion parameters selected by GCV varied between slides and 

experiments analyzed, reflecting the variability of system-

atic dye bias and manifests the necessity of model selection 

for each array individually. Visual inspection of spatial dis-

tribution of absolute log ratio M suggested an uneven vari-

ability of M across slides. Since the span of log ratios 

seemed to vary continuously across the array, a correction 

by locally optimized scaling was performed. This procedure 

yielded an even variability of M across the spatial dimension 

of the array after local normalization and scaling. 

An important criterion for the quality of normalization is its 

efficiency in removing systematic errors. However, the as-

sessment of normalization efficiencies has been neglected so 

far in previous studies. Using the methods which we devel-

oped for error identification, we compared the efficiency of 

several normalization schemes for two independently gener-

ated cDNA microarray data sets. Statistical efficiency test-

ing was based on permutation tests detecting spot neighbor-

hoods affected by experimental bias. These tests allow a 

stringent identification of regions of significant bias in mi-

croarray data. We believe that this feature is especially 

valuable for the important assessment of data quality, since 

it facilitates rapid detection of artifacts and may help to im-

prove the experimental procedures. Fold changes should be 

treated with care if the corresponding spots have signifi-

cantly biased neighborhoods even after normalization. As an 

alternative to permutation tests, we also applied correlation 

analysis for comparison of normalization efficiencies. Cor-

relation analysis is less computationally expensive and 

agrees well with the results of the permutation test, but can-

not deliver localization of experimental bias in the data.  

 

Besides the schemes presented, we tested several other 

variations of iterative local regression with parameter op-

timizations. Alternatively to the proposed normalization by 

OLIN, we conducted local regression of log ratios M with 

respect to spot intensity A and spot location (X,Y) simulta-

neously. The computational costs of parameter optimization 

increased considerably, as cross-validation has to be applied 

to a three-dimensional parameter space. The results of this 

procedure yielded, however, no improvement in efficiency 

and were frequently less stable. Reversing the order of in-

tensity-dependent and spatial normalization in the OLIN 

procedure also yielded a decreased performance of normali-

zation. Moreover, if the fold changes are asymmetrically 

distributed or a high background noise exists, the use of a 

more robust local regression procedure might be favorable. 

A robust version of LOCFIT is implemented by iterative 

fitting of the data with successive down-weighting of out-

liers in the regression [13]. The application of robust 

LOCFIT to the data sets examined showed, however, only 

minimal difference in outcome compared with the results of 

the original algorithm. 

 

We restricted our normalization approaches to correction for 

spot intensity- and location-dependent dye bias. However, 

the principle components of our schemes, iterative regres-

sion and model selection, can be applied to the correction 

for other types of bias in cDNA microarray, such as those 

linked to differing microtiter plates, print-runs, scanner set-

tings etc. Besides a better performance, such extended nor-

malization systems may give researchers new insights about 

the sources of variability in cDNA microarray data and may 

support the optimization of experimental protocols.  

 

Conclusions 
Although several other studies have recently introduced 

normalization by local regression, none has addressed the  

selection of model parameters. Based on two independently 

generated microarray data sets, the major conclusions of our 

study are following:  
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First, our analysis shows that parameter selection is crucial 

for the efficiency of normalization and that the use of de-

fault parameters can severely compromise the quality of 

normalized data. This finding is important, as normalization 

by local regression has become the method of choice for 

many researchers and has been implemented in numerous 

software packages for microarray data analysis. The final 

choice of regression parameters, however, remains with the 

users.  Accepting the default parameters of the software 

without further evaluation can easily lead to insufficient 

normalization interfering with the subsequent data analysis.  

 

Second, extensive comparison of normalization efficiencies 

showed that schemes based on parameter optimization can 

considerably reduce systematic errors in microarray data. 

Using these schemes, researchers can avoid insufficient 

normalization of microarray data and improve the overall 

consistency of measured gene expression between replicated 

arrays These schemes can also  yield an improved correla-

tion of microarray measurements with actual biological 

changes in expression and, thus, support the validity of re-

sults derived in follow-up gene expression analysis.      

 

Third, generalized cross-validation was successfully em-

ployed for model selection. To our knowledge, this proce-

dure has not been applied in the field of microarray data 

analysis so far. However, we found that it is of considerable 

computational advantage compared to the popular standard 

cross-validation and it may be favorable for a wide range of 

tasks in the analysis of high-throughput data.  

 

Fourth, we developed methods for stringent detection of 

systematic errors. Independently of the normalization 

schemes proposed, these new methods can rapidly identify 

artifacts and experimental variability obscuring biological 

changes of interest. They may also assist in the optimization 

of experimental protocols and will be useful for researchers, 

especially if they are new to the field of microarrays. It 

should be noted that GCV is only one of many methods pro-

posed for smoothing parameter selection (see Methods and 

Materials). The careful comparison of these methods is 

therefore an important task for future study.  

 

Finally, the core methods and procedures introduced in this 

study are not restricted to cDNA microarrays, but can be 

applied to other array platforms as well. We believe there-

fore that they will be helpful to many researchers using ar-

ray technologies. 

 

 

Methods and Materials 
 

Hybridization model 
To relate fluorescence signals to changes in gene expres-

sion, we introduce a hybridization model on which we base 

our normalization methods. Explicitly modeling the relation 

between signal intensities and changes in gene expression 

can separate the measured error into systematic and random 

errors. The model is especially developed for two-color ar-

rays consisting commonly of a red (Cy5) and a green (Cy3) 

fluorescence channel. The basic model might, however, be 

generalized to other types of microarrays. The fundamental 

variables in our hybridization model are the fluorescence 

intensities of spots in the red (I
r
) and the green channel (I

g
). 

These intensities are functions of the abundance of labeled 

transcripts (T
r/g

). 

Thus, we have 

 

I
r/g

 = f
r/g 

(T
r/g

,ϑ )       [4] 

 

with functions f
r/g 

relating the abundance of the transcripts 

to the measured intensities and a set of parameters ϑ  in the 

experiment. Note that the functions f
r 

and f
g 

might be dif-

ferent. 

 

Under ideal circumstances, this relation of I and T is linear 

up to an additional experimental error ε: 

 

 I = N(ϑ ) T + ε     [5] 

 

where N is a normalization factor and a function of experi-

mental parameters ϑ  such as the laser power or amplifica-

tion of the scanned signal. 

 

Generally, this simple relation does not hold for microarrays 

because of effects such as intensity background and satura-

tion. Including an additive background I
b

 leads to 

 

 I = N T + I
b 

+ ε = ( N +
T

Ib ) T + ε = N' T + ε    

 

The normalization factor N' now depends on transcript 

abundance T. We can obtain the original relation [5] sub-

tracting the background intensity I
b

, so that the background 

corrected intensity I
bc 

is derived by 

 

 I
bc 

= I - I
b 

= N T + I
b 

+ ε - I
b 

= N T + ε   [6] 

 

This step is included in most normalization procedures 

where the background intensity is estimated by the local 

background fluorescence surrounding the spot. Frequently, 

saturation also affects the relation between intensity and 

abundance of labeled transcript. A possible model for these 

effects is 

 

( )
εε +=

+
=+

+
= TNT

TcNT

N

cTN

TN
I '

/2

1

2

1   [7] 

 

where N1,N2 and c are constants. Although the right-hand 

side of the equation [7] has the same form as equation [6], 

the normalization factor N' is not constant, but varies with 

the transcript abundance T. Since the saturation is generally 

of unknown form, the recovery of the original relation be-

tween I and T might not be possible. 
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In a two-color experiment, ratios of fluorescence intensities 

are generally used to represent fold changes of gene expres-

sion. This procedure has the advantage of controlling for 

several variations that are inherent to spotted arrays such as 

size and morphology of the spots and variable amount of 

spotted DNA. Therefore, fold changes (or ratios) of gene 

expressions are the major quantities derived in two-color 

experiments. To relate the ratios for labeled transcript abun-

dances (T
r
 /T

g
) to the ratios of signal intensities by (I

r 
/ I

g
), 

we propose following hybridization model: 

 

 R =
ggg

rrr

gg

rr

g

r

Tk

Tk

Tf

Tf

I

I

εϑ
εϑ

ϑ
ϑ

+

+
==

)(

)(

),(

),(
   [8] 

 

which is based on the equations [4]-[7]. The normalization 

factors kr/g(ϑ ) are functions dependent on a set of experi-

mental parameters ϑ . This gives the relation between the 

measured quantities (I
r 

/ I
g

) and the unknown quantities (T
r
 

/T
g

) in which we are interested. Equation [8] can be log2-

transformed to facilitate the computational evaluation. This 

leads to 

 

M  =log2(R) 

     = log2( rrr Tk εϑ +)( ) - log2( ggg Tk εϑ +)( )  

 

To simplify this equation, we use the Taylor expansion 

 

f(x+ε )≈ f(x) +
x

xf

∂

∂ )(
• ε 

 log2(x+ε) ≈ log2(x) + 
)2ln(

1

x
• ε 

 

We can thus approximate the above equation [6] by 
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with )(ϑκ as additive normalization factor, D as logged fold 

changes and  ε~  as the random error.  

This results in the final relation: 

 

M - κ(ϑ ) ≈ D + ε~     [9] 

 

Local Regression 
For the two schemes proposed in this study, a local regres-
sion method is used. Generally, regression methods aim to 

model the relation between a response variable Y and a set 

of predictor variables x. Regression models can be ex-

pressed as 

Y
i
 = µ( x

i 
)+ ε

i  
[10] 

 

with a function µ of a chosen class and an error term ε
i
. A 

standard procedure is the use of global regression methods. 

They, however, assume that the chosen global model holds 

over the whole range of x. A more flexible fitting approach 

is offered by local regression using polynomial functions, 
which are fitted at x based on data points in a neighborhood 

of chosen size h. The popular lowess method belongs to this 

type of local regression [12]. For our normalization 

schemes, we use local regression as performed by the 

LOCFIT method, since it is computationally more flexible. 

The main points of LOCFIT are outlined below. LOCFIT is 
described in further detail by C. Loader [13].  

LOCFIT Algorithm: 

Evaluation points: LOCFIT does not perform local regres-

sion at every point of the data set, but only at the vertex 

points z of a grid which spans the whole range of variable 

values of x. 
Local polynomial fit: Quadratic polynomials are locally fit-

ted at the vertex points z. In a one-dimensional regression, 

for example, this leads to the approximation of µ by 

 Μ(z) ≈ a
0

 + a
1

(xi - z) + a
2
 (xi - z)2  

The neighboring points xi are weighted according to the 

tricube weight function 
 

3
3

1 











 −
=

h(x)

xx
-(x) W i

i   

 

with h(x) as the bandwidth which defines the size of the 

smoothing window. The bandwidth h(x) is the minimal 

neighborhood size which includes the fraction α of the total 
number of points. By choosing α, the user of LOCFIT can 

determine the smoothness of the fit.  

 

Multivariate regression: If the local regression is based on 

multiple predictor variables xj, multivariate local polynomi-

als are used for fitting. The independent predictor variable xj

 
are adjusted by a scaling factor sj: 

j

j
j

scaled
s

x
x =  

 

Fitting criteria: The polynomial coefficients a
i
 are deter-

mined by a local likelihood model. The response variable Y
i
 

is assumed to follow a chosen distribution function. The de-

fault distribution in LOCFIT is Gaussian. This leads to a lo-

cal likelihood criterion that is equivalent to the local least 

square criterion. 
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 Interpolation: After a local regression is performed for ver-

tex points of the grid, the function µ for an arbitrary point x
i 

is obtained by interpolation of the function approximations 

at the vertex points. To ensure that the function µ is globally 

differentiable, LOCFIT uses a cubic polynomial for interpo-

lation, which includes estimates of the derivatives at the ver-

tices. 

 

Model selection 
A standard approach for model selection is k-fold cross-

validation. It splits the data into k segments of which k -1 

segments are used for the model construction and one seg-

ment for the validation of the model. This is repeated k 

times, so that every segment is used for validation. Cross 

validation estimates the prediction error by averaging the 

mean squared errors in the k runs. If different models are 

compared by cross-validation, the model yielding the lowest 

prediction error is generally selected. In the extreme case 

that k equals the number of data points, the cross-validation 

is also referred to as the leave-one-out method.  

 

However, because of the large number of data points in mi-

croarray data, regression model selection by leave-one-out 

cross-validation becomes computationally prohibitive as the 

number of models constructed for cross-validation equals 

the number of data points. Even the computationally less 

expensive k-fold cross-validation is not practicable if a large 

number of models is compared for selection. As an alterna-

tive to standard cross-validation methods, we used, there-

fore, the generalized cross-validation (GCV) which ap-

proximates the leave-one-out method [14]. GCV is easier to 

perform, since this procedure does not include multiple con-

structions of regression models based on partial data. For 

the local regression model µ̂ , the GCV criterion is  

 

2

1

2

)(

))(ˆ(
)ˆ(

ν

µ
µ

−

−
=
∑ =

n

xY
nGCV

n

i ii
 

 

where n is the number of data points and ν  is the degrees of 

freedom of the local fit and is given by the trace of the hat 

matrix linking data and fitted values [13]. Basically, the 

nominator term of the GCV criterion is the square error of 

the fit and thus favors models that fit well the data. The de-

nominator term punish models with large degrees of free-

dom compared to the number of data points and thus aims to 

prevent over-fitting. For model selection, the cross-

validation estimate of the prediction error is replaced by the 

GCV criterion. Thus, the model with the minimal GCV 

score is chosen. 

 

GCV is an example for smoothing parameter selection, 

which is an intensively studied subject in non-parametric 

function estimation. A variety of selection methods have 

been proposed. They are commonly divided into two 

classes: i) Classical methods such as CV, GCV and 

Akaike’s information criterion are extensions of approaches 

used in parametric function estimation. These methods are 

also called ‘first generation methods’. ii) Plug-in methods 

(or so-called ‘second generation methods) have been pri-

marily developed for kernel density estimation. They are 

generally based on the Taylor expansion of the bias of the 

estimation. A ‘pilot-bandwidth’ is then plugged into the ex-

pansion to calculate the optimal smoothing parameter. A 

difficulty in using plug-in methods is, however, the selec-

tion of such pilot-bandwidths.  For an introduction to plug-

in methods, the reader is referred to reference [28]. The is-

sue, which of these parameter selection methods is superior, 

has remained highly controversial, as their performance 

seems to depend not only on the assumption about the fitted 

data, but also on the chosen criterion for the goodness of fit. 

Further information and discussion about smoothing pa-

rameter selection can be found in references [29-32]. 

 

Significance of systematic errors 
To examine dependencies between observed log ratios M 

and experimental variables, permutation tests were applied. 

Permutation (or randomization) tests have the advantage 

that a particular data distribution is not assumed. They rely 

solely on the observed data examples and can be applied 

with a variety of test statistics. A major restriction, however, 

is that permutation tests are computationally very intensive. 

The basic idea of a permutation test is simple: Given labeled 

data, all permutations of the labels should be equally likely 

[33]. Evaluating a chosen test statistic for permutations gen-

erated, an empirical distribution of the test statistic can be 

constructed. The significance of experimental observations 

can be determined by comparing the test statistic derived 

from permutated data with the test statistic of the original 

data.  

 

In detail: The dependency of log ratios M on spot intensity A 

or spot location (X,Y) was tested for each slide independ-

ently. The null hypothesis states the independence of M and 

A or (X,Y). To test if log ratios M depend on spot intensity 

A, spots were ordered with respect to A. This defines a 

neighborhood of spots with similar A for each spot. Next, a 

test statistic was generated by calculating the spots’ median 

log ratio M within a neighborhood of chosen size. An em-

pirical distribution of the test statistic was produced by cal-

culating M  for 100 randomly permutated intensity orders 

of spots. Comparing the empirical distribution of M  with 

the observed distribution, we can evaluate the independence 

of M and A. If M is independent of A, M is expected to be 

symmetrically distributed around its mean value. To assess 

the significance of observing positive deviations of M , we 

used the false discovery rate (FDR) which indicates the ex-

pected proportion of false discoveries amongst rejected null 

hypotheses [34]. It is defined as FDR=n/s, where n is the 

number of neighborhoods with M  larger than a chosen 

threshold c for the empirical distribution of M  and s is the 

number of neighborhoods with M > c for the distribution 

derived from the original data. Varying threshold c delivers 

the number of significant M  for a set of chosen FDRs i.e. 

in our case FDR=0.001, 0.005, 0.01, 0.05, 0.1. Correspond-

ingly, the significance of observing negative deviations of 

M can be determined based the number of M  values lower 

than a chosen threshold. 
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The same testing procedure was applied to test the depend-

ence of log ratios M on spot location (X, Y).  The null hy-

pothesis states random spotting i.e. the independence of log 

ratio M and spot location. The neighborhood of a spot is de-

fined here by a two dimensional window of chosen size. The 

empirical distribution of M  was based on 100 random 

permutations of the spot locations on the array. The signifi-

cance of M  was assessed using the FDR as above.  In the 

same manner, the dependence of the absolute value of log 

ratio M and spot location can be tested. 

 

Microarray data 
The normalization models were applied to cDNA microar-

ray data generated in two independent experiments. 

 

Experiment I: SW480/SW620 (SW) experiment. 

Gene expression in two cancer cell lines, SW480 and 

SW620, is compared. The SW480 cell line was derived 

from a colon tumor of a 50-year old male patient. The sec-

ond cell line (SW620) originated from a lymph node metas-

tasis of the same patient. Target cDNA from SW480 was 

labeled with Cy3 whereas cDNA from SW620 was labeled 

with Cy5 using the amino-allyl labeling method. Both 

cDNA pools were co-hybridized on glass slides with 8448 

spots. The spots consisted of 3986 distinct sequence-verified 

human cDNA clones (Research Genetics, release GF211) 

printed in duplicates, 84 spots from non-human cDNA 

clones and a further 154 control spots. Spots were printed 

by 4x4 pins. The experiment consisted of four replicated 

arrays derived from separate labeling reactions. The slides 

were scanned using a Scanarray 5000 system. Local back-

ground spot intensities were extracted by QuantArray soft-

ware (version2.1). Preliminary analysis showed that repli-

cated spots were highly correlated (average Pearson correla-

tion: 0.94). Since this may interfere with the efficiency test-

ing performed in this study, we excluded replicated spots to 

ensure the independence of spot intensities. Since all spots 

were printed in duplicates, only half of the spots (4224) 

were included in the analysis. However, all normalization 

methods and statistical tests were also applied to the ex-

cluded spots yielding very similar results (data not shown). 

Experimental details and further analysis can be found in 

Futschik et al. [17]. 

 

Experiment II: apolipoprotein AI (apo AI) experiment 

This experiment consists of cDNA microarray data from 

eight apo AI knock-out mice and eight control mice. Target 

cDNA from each of the 16 mice was indirectly labeled with 

Cy5 and was co-hybridized with a reference sample on glass 

slides. The reference sample was prepared by pooling 

cDNA from the eight control mice and was labeled with 

Cy3. Each of the 16 microarrays contained 6384 cDNA 

probes. Spots were assayed by 4x4 pins. For imaging of 

slides, an Axon GenePix scanner was used. Fluorescence 

intensities of spots were extracted using the software pack-

age Spot. Further details can be found in Callow et al. [35]. 

The microarray data are publicly available and were 

downloaded from http://www.stat.berkley.edu/users/terry/ 

zarray/Html/. This data set was previously used by Yang et 

al. to present several normalization methods based on local 

regression by lowess [6]. 

 

 

Experiment III: Fibroblast experiment 

To study growth control and cell cycle progression, Iyer and 

coworkers measured the temporal response of fibroblasts to 

fetal serum bovine serum using cDNA microarrays [20]. 

Cultured fibroblasts were first induced to enter a quiescent 

state (G0) by serum deprivation. Subsequent addition of se-

rum evoked fibroblasts to re-enter the cell cycle and to pro-

liferate. To measure gene expression, Iyer and colleagues 

used cDNA microarrays representing 8613 human genes. 

After serum stimulation, cells were sampled at 12 different 

time points ranging form 15 min to 24 hours. The extracted 

mRNA was reverse transcripted and labeled with Cy5. All 

these samples were then separately co-hybridized with Cy3-

labelled reference cDNA derived from cells in the quiescent 

state. A major finding of this experiment was that many 

transcriptional changes observed were related to wound 

healing. To validate the microarray measurements, the tran-

scipt levels of five genes (IL-8, COX2, Mast, B4-2 and ac-

tin) were measured for the different time points using 

TaqMan 5’ nuclease fluorigenic quantitative polymerase 

chain reaction. Comparing the logged fold changes based by 

PCR with those based on microarrays, Ivyer and coworkers 

found that these methods gave generally similar results. 

However, they also noted some exceptions from this overall 

similarity (see figure 3 and note 10 of reference [20]). The 

data of the fibroblast experiment is publicly accessible at 

http://genome-stanford.edu/serum. 

 

List of abbreviations 
Apo AI - apolipoprotein AI 

FDR - False discovery rate 

GCV - Generalized cross-validation 

OLIN - Optimized local intensity-dependent normalization 

OSLIN - Optimized scaled local intensity-dependent nor-

malization 

P-lowess - Within print-tip group normalization by lowess 

(Q)PCR- (Quantative) polymerase chain reaction” 

S-lowess – Scaled within print-tip group normalization by 

lowess 

 

Acknowledgements 
The normalization schemes presented in this study are im-

plemented in the statistical language R using the LOCFIT 

and Bioconductor add-on packages [21,36]. The implemen-

tation as Bioconductor R-package is currently under devel-

opment and will be freely available from the Bioconductor 

project [21]. A graphical user interface for convenient appli-

cation will be incorporated. M.F. was supported by a PhD 

scholarship from the University of Otago. Finally, we would 

like to thank Bronwyn Carlisle for proof-reading and the 

referees for their critical and constructive comments. 

 

References 
1. Holloway AJ, van Laar, RK, Tothill, RW, Bowtell DDL: Op-

tions available-from start to finish-for obtaining data from 

DNA microarrays II, Nature Genet  2002, Suppl. 32:481-

489. 



http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

 14 

2. Hoffmann,R, Seidl T, Dugas M: Profound effect of normali-

zation on detection of differentially expressed genes in oli-

gonucleotide microarray data analysis, Genome Biology 

2002,  3:research0033.1-0033.11 

3. Tseng GC, Oh, MK, Rohlin L, Liao JC, Wong WH: Issues in 

cDNA microarray analysis: quality filtering, channel 

normalization, models of variations and assessment of 

gene effects. Nucleic Acids Res 2001, 29: 2549-2557 

4. Dudoit S, Yang YH, Speed TP, Callow MJ: Statistical meth-

ods for identifying differentially expressed genes in repli-

cated cDNA microarray experiments. Stat Sinica 2002, 

12(1):111-139. 

5. Schuchhardt  J, Beule D, Malik A, Wolski  E, Eickhoff  H, 

Lehrach H, Herzel, H:  Normalization strategies for cDNA 

micorarrays. Nucleic Acids Res 2000, 28:e47 

6. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed 

T: Normalization for cDNA microarray data: a robust 

composite method addressing single and multiple system-

atic variation. Nucleic Acid Res 2002, 30:e15 

7. Colantuoni C, Henry G, Zeger S, Pevsner J: Local mean 

normalization of microarray element signal intensities 

across ana array surface: quality control and correction of 

spatially systematic artifacts, Biotechniques 2002, 32, 1316-

1320 

8. Finkelstein, DB, Gollub,J, Ewing, R, Sterky, F, Somerville, S, 

and Cherry,J  Iterative linear regression by sector: renor-

malization of cDNA microarray data and cluster analysis 

weighted by cross homology. Proceedings of CAMDA 2000 

9. Quackenbush, J: Microarray data normalization and trans-

formation, Nature Genetics 2002, Supp 32:496-501 

10. Schena M, Shalon D, Heller R, Chai A, Brown PO Davis 

RW: Parallel human genome analysis: microarray-based 

expression monitoring of 1000 genes, PNAS 1996, 

93(20):10614-10619. 

11. Kepler, TB, Crosby L And Morgan, KT: Normalization and 

analysis of DNA microarray data by self-consistency and 

local regression, Genome Biology 2002,3(7): research0037.1-

0037.12 

12. Cleveland, WS: Robust locally weighted regression and 

smoothing scatterplots. J Am Stat Ass 1979, 74: 829-836 

13. Loader C: Local Regression and Likelihood, Springer, New 

York; 1999 

14. Craven, P and Wahba, G: Smoothing noisy data with spline 

functions, Numerische Mathematik 1979, 31: 377-403 

15. Leibovitz,A, Stinson,JC,  McCombs,WB, McCoy,CE, 

Mazur,KC and Mabry,ND: Classification of human colorec-

tal adenocarcinoma cell lines, Cancer Res., 36:4562-4569  

16. Dudley,AM, Aach,J, Steffen,MA, and Church,GM: Measur-

ing absolute expression with microarrays using a cali-

brated reference sample and an extended signal intensity 

range, PNAS, 2002,  99:7554-7559 

17. Futschik M, Jeffs A, Pattison S, Kasabov N, Sullivan M, Mer-

rie, Reeve, Gene expression profiling of metastatic and 

nonmetastatic colorectal cancer cell lines, Genome Letters 

2002, 1:26-34 

18. Hewitt, RE, Brown,KE, Corcoaran,M and Stetler-Stevenson, 

WG, Increased expression of tissue inhibitor of metallo-

proteinases type I (TIMP-1) in a more tumourigenic colon 

cancer cell line, J Pathol,  2000, 192: 455-459 

19. Henriet,P, Blavier,L, and Declerck,YA, Tissue inhibitors of 

metalloproteinases (TIMP) in invasion and proliferation, 

APMIS, 1999, 107(1): 111-119 

20. Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JCF, 

Trent JM,  Staudt LM, Hudson J, Boguski MS, Lashkari D, 

Shalon D, Botstein D, Brown PO, The trasnscriptional pro-

gram in the response of human fibroblasts to serum,  Sci-

ence, 283: 83-87  

21. Bioconductor [http://www.bioconductor.org] 

22. MIDAS [http://www.tigr.org] 

23. SNOMAD [http://pevsnerlab.kennedykrieger.org/snomad]  

24. GeneTraffic [http://www.iobion.com]. 
25. Kerr MK, Martin M, Churchill GA: Analysis of variance for 

gene expression microarray data. J Comput Biol 2000, 7(6): 

819-37 

26. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, 

Hamadeh H, Bushel P, Afshari C, Paules RS: Assessing gene 

significance from cDNA microarray expression data via 

mixed models J Comput Biol 2001, 8(6): 625-37. 

27. Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC: 

Accuracy and calibration of commercial oligonucleotide 

and custom cDNA microarrays, Nucleic Acid Res 2002, 

30(10):e48. 

28. Wand,MP and Jones,MC: Kernel smoothing, Chapman & 

Hall, London; 1995 

29. Jones,MC, Marron,JS  and Sheather, SJ: A brief summary of 

bandwidth selection for density estination, J Am Stat Ass, 

1996, 91, 401-407 

30. Gu, C: Model indexing and smoothing parameter selection 

in nonparametric regression (with discussion), Statistica 

Sinica, 1998, 8(3), 607-646 

31. Härdle,W and Schimek, MG (eds), Statistical theory and 

computational aspects of smoothing, Physica-Verlag, Heidel-

berg; 1996  

32. Loader, CR: Bandwith selection: Classical or plug-in?, An-

nals of Statistics, 1999, 27, 415-438 

33. Fisher, R: The design of experiments, Oliver and Boyd, Edin-

burgh; 1960. 

34. Benjamini,Y, and Hochberg, Y: Controlling the false dis-

covery rate: a practical and powerful approach to multi-

ple testing. J  Roy Stat Soc Series B 1995, 57, 289–300. 

35. Callow  MJ, Dudoit S, Gong EL, Speed TP, Rubin, EM: Mi-

croarray expression profiling identifies genes with altered 

expression in HDL-deficient mice, Genome Res 2000, 

10:2022-2029 

36. R project [http://www.r-project.org] 



http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

 15 

Figures: 

 
Figure 1: Intensity and spatial distribution of raw log intensity ratios M of slide 3 of the SW 480/620 experiment: a) The MA-

plot indicates a strong bias towards the Cy3 channel for low spot intensities A b) The spatial MXY-plot shows uneven distribu-

tion of positive M (red squares) and negative M (green squares). The columns with consistently negative M correspond to 

empty control spots. The axis labels X and Y refer to the spot location as determined by the Quantarray scanning software. 

 

 

 

Figure 2: Intensity and spatial distribution of log ratios for local intensity-dependent normalization (LIN) with default model 

parameters. a) The residuals of the local regression are well balanced around zero in MA-plot. b) Patterns of spatial bias are still 

apparent in the MXY-plot, while the lines of negative M corresponding to empty spots disappeared due to the intensity-

dependent normalization.  

 

 

 

Figure 3: Intensity and spatial distribution of log ratios for optimized local intensity-dependent normalization: Both plots indi-

cate no apparent bias for log ratio M with respect to the intensity A or the spot location (X,Y). Note, however, that the MXY-plot 

shows areas of differing lightness corresponding to areas of differing variability of M. Regions with large abs(M) appear, there-

fore, lighter than regions with small abs(M). For example, the variance of M seems to be larger around spot location 

(X=2500,Y=16000) than round the location (X=7000,Y=3000).  
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Figure 4: Comparison of GCV and 5-fold cross-validation: The relation between prediction mean square error (PMSE) and 

smoothing parameter αA is shown for the three iterations in the OLIN procedure applied to slide 16 of the apo AI experiment. 

The 5-fold cross-validation was conducted for five random splits of the data. Mean values and standard errors of PMSE esti-

mates are represented as black diamonds and error bars. PMSE estimates by GCV are represented by red squares. Generally, 

these estimates lie within the error margin of PMSE produced by 5-fold cross-validation. The GCV-optimized value of αA was 

0.3 for the first, 0.4 for the second and 1.0 for the third iteration.  

 

 

 

 

Figure 5: Intensity and spatial distribution of log ratios M for optimized scaled local intensity-dependent normalization: The 

MXY shows that the variability of log ratios is even across slide 3 of the SW 480/620 experiments.  

 

 

 

 

 

Figure 6: MXY-plots of slide 1 of apo AI experiment for raw and normalized data. In this case, the X and Y coordinates corre-

spond to rows and columns of the array, since exact spot locations are not given for the publicly available data set.  
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Figure 7: Significance of spatial bias for slide 1 of the apo AI experiment: Spots were represented by red or green squares if 

their neighborhood had a significant positive or negative median M value, respectively. The level of significance is encoded by 

the lightness of colors. 

 

 

 

 
Figure 8: Histogram of Pearson correlation between logged qPCR- and microarray-based fold changes of COX2 for the fibro-

blast microarray experiment by Iyer and colleagues [20].   
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Tables: 

Table 1: Number of significant spot neighborhoods on the intensity scale for arrays of the experiments analyzed: Spot 

neighborhoods are found significant, if the median log ratios M has larger positive and negative value than expected from ran-

dom order of spots along the intensity scale. The level of significance was defined by FDR=0.01. The spot neighborhood was 

defined by a symmetrical window of 50 spots.  

 

Table 2: Number of significant spot neighborhoods across the spatial layout of the arrays analyzed. The level of significance 

was defined by FDR=0.01. The spot neighborhood was defined by a window of 5x5 spots. 

Microarray 

 

No norm. Linear 

normal. 

Global 

 lowess 

P-lowess S-lowess LIN OLIN OSLIN 

SW 1 596 580 2 5 7 39 12 0 

SW 2 1090 1080 0 0 0 52 0 0 

SW 3 1138 988 0 0 0 0 0 0 

SW 4 745 655 0 9 4 0 12 0 

Apo  1 1748 1810 18 0 0 26 0 0 

Apo  2 2739 2683 16 17 26 24 0 0 

Apo  3 3479 3559 52 30 15 0 1 0 

Apo  4 2122 2184 1 17 22 0 0 11 

Apo  5 3885 3886 100 13 11 94 0 0 

Apo  6 3540 3555 0 0 0 114 0 0 

Apo  7 3725 3724 0 0 7 0 0 0 

Apo  8 3253 3296 66 0 0 507 0 0 

Apo  9 1040 1044 114 0 0 455 0 0 

Apo 10 1554 1575 0 0 0 45 0 0 

Apo 11 2903 2889 5 34 35 2 0 0 

Apo 12 3536 3543 14 0 0 47 0 0 

Apo 13 2819 2901 132 12 3 354 4 0 

Apo 14 2291 2342 313 0 12 484 64 4 

Apo 15 3050 3034 95 36 0 164 0 0 

Apo 16 1338 1374 159 0 12 918 0 0 

Microarray No norm. Linear  

Norm.l 

Global 

lowess 

P-lowess S-lowess LIN OLIN OSLIN 

SW 1 1500 1483 1625 214 220 106 0 0 

SW 2 808 831 1068 218 113 67 0 0 

SW 3 874 815 723 126 96 78 1 0 

SW 4 741 757 846 76 43 49 0 0 

Apo  1 1173 1196 1276 913 491 755 100 1 

Apo  2 521 518 801 176 74 221 3 0 

Apo  3 562 576 706 334 79 258 0 0 

Apo  4 770 771 1058 177 14 176 2 0 

Apo  5 670 648 844 357 222 381 5 0 

Apo  6 432 432 1003 129 106 296 10 0 

Apo  7 516 526 1258 186 88 194 17 0 

Apo  8 850 833 1202 684 342 458 61 9 

Apo  9 1596 1621 1780 1105 644 798 21 5 

Apo 10 707 711 896 261 108 279 3 0 

Apo 11 504 484 1306 166 87 258 11 0 

Apo 12 1313 1323 1144 425 288 370 12 17 

Apo 13 1357 1368 1155 653 394 568 41 0 

Apo 14 862 1005 987 273 108 272 82 0 

Apo 15 733 743 1004 588 241 502 97 0 

Apo 16 942 985 1347 786 333 470 47 0 
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Table 3: Statistical comparison of normalization schemes: Intensity-dependent correlation (int.-dependent cor( MM , )) de-

scribes the correlation between the log ratio M of the spot and the median value of M within a symmetrical neighborhood of 50 

spots on the intensity scale. Spatial correlation (spatial cor( MM , )) describes the correlation between the log ratio M of the 

spot and the median value of M within a neighborhood defined by a window of 5x5 spots. To ensure independence, M of the 

spot was not included in the median M of the neighborhood. For the calculation of mean pair-wise correlation of slides, spots 

with intensity A < 11.6 were excluded. The significance of differential gene expression was examined by a one-sample t-test 

with the null hypothesis of mean log ratio M = 0. Duplicated spots on SW480/620 arrays were treated as independent measure-

ments producing a maximum of 8 observations per gene. Genes were detected as significantly differentially expressed if their 

Bonferroni adjusted p-values were smaller than 0.01. For the fibroblast experiment, the average Pearson correlation between 

qPCR-based logged fold changes MqPCR and microarray-based logged fold changes Mma  of the genes IL-8, COX2, Mast, B4-2 

and actin is shown.  

 

 

Control 

spot 

Number of replicate 

spots per slide 

Global 

lowess 

P-lowess S-lowess OLIN OSLIN 

SS-DNA 48 6.46 3.33 4.03 1.90 2.82 

Cot-1 DNA 12 4.34 4.10 5.07 2.90 3.73 

Rice DNA 12 12.0 4.34 5.03 2.35 2.79 

 

Table 4: Comparison of variance of log ratios for control spots in SW480/620 experiments: The average within-slide variance 

(x 10
-2

) of log ratios M of control spots is shown after applying different normalization schemes. The three types of control 

spots derived from genomic DNA were used (Salmon sperm (SS) DNA, Cot-1 DNA, Rice DNA).  Their intensities were above 

background due to non-specific cross-hybridization. The location of the replicated control spots was spatially distributed across 

the array. Comparison of corresponding log ratios M thus provides a measure for the spatial consistency of results produced by 

normalization.  

  

Exp. No 

 norm. 

Linear 

norm. 

Global 

lowess 

P- 

    lowess 

S- 

     lowess 

  LIN OLIN OSLIN 

Int.-dependent 

cor( MM , ) 

SW 

480/620 

0.50 0.50 0.01 -0.01 -0.01 0.04 0.00 0.00 

Int.-dependent 

cor( MM , ) 

Apo AI 0.47 0.47 0.06 0.05 0.05 0.09 0.00 0.00 

Spatial 

cor( MM , ) 

SW 

480/620 

0.53 0.53 0.56 0.34 0.32 0.27 0.07 0.08 

Spatial 

cor( MM , ) 

Apo AI 0.58 0.58 0.59 0.41 0.38 0.43 0.15 0.15 

Mean pair-wise 

cor(M) 

SW 

480/620 

0.46 0.46 0.50 0.59 0.59 0.63 0.67 0.64 

Var(M) SW 

480/620 

927.1 658.7 455.4 216.3 213.0 205.7 163.0 186.5 

Number of sig-

nif. Genes 

SW 

480/620 

26 71 51 75 88 94 99 129 

Average 

cor(MqPCR,Mma) 

Fibro-

blast 

0.82 0.81 0.82 0.82 0.81 0.81 0.84 0.88 
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