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Description

Field of the Invention

[0001] This invention relates to diagnosis and evaluation of disease. In particular, this invention relates to systems for
supporting medical decisions based on multiple sets of information relating to a patient’s condition. More particularly,
this invention relates to systems for supporting medical decisions based on genetic information and clinical information.

BACKGROUND

[0002] Medical diagnosis and evaluation of a patient’s condition are of great concern to medical professionals. Much
time is spent on obtaining information from a patient during visits to practitioners. Medical history is often a major
component of a proper diagnosis. Additionally, a practitioner may request specific physiological or pathophysiological
measurements be made, to facilitate understanding the patient’s condition. Such clinical information has historically
been a powerful tool to provide proper diagnosis and evaluation of therapy.
[0003] With the advent of increasingly widespread acquisition of genetic information from a patient, a practitioner now
has an opportunity to incorporate genetic information and clinical information together, to further improve accuracy of
diagnosis and evaluation of therapy. Proper diagnosis and monitoring are necessary for a practitioner to be able to make
the best informed decisions about either initiating a course of therapy or for altering a therapeutic regimen to best suit
a particular patient’s needs.
[0004] However, there are few systems available that can be used to incorporate genetic information with a patient’s
clinical information to provide the practitioner with rapid, reliable information to assist in the decision making process.
[0005] In order to influence patient management in a clinical environment, medical decision support systems must
have a high level of confidence. Examples of such medical systems are:

• Classification systems that classify, for example, a new tumour (a new patient’s data) into existing classes of diseases;
• Prognostic systems that predict the risk of a patient for a particular disease (e.g. cardiovascular risk prognosis); and
• Prognostic systems that predict the outcome of a treatment for a particular patient and a particular drug (e.g. the

outcome of a chemotherapy for a patient of DLBCL cancer, for example, see reference 1)

[0006] Many existing medical decision support systems use only one source of information, and thus the confidence
of their models is not very high. For example, Shipp et al [1] described a system that uses machine learning techniques,
specifically a weighted voting algorithm and support vector system, for prognostic stratification of patients based on
gene expression data taken from 58 samples of 32 cured and 26 fatal cases. However their approach misclassified 23%
of the patients in terms of predicting the outcome of their chemotherapy treatment. They achieved 77.6% correct prognosis
of both cured and fatal cases of B-cell lymphoma cancer. The models on a similar task presented in Alizadeh et al [2]
are not clinically applicable for classification purposes. Thus, there is a need for improved reliability of medical decision
support systems that can overcome the shortcomings in the art.
[0007] In another aspect of the problem, there are no existing methods that help discover relationship between gene
expression and clinical parameters thus making a personalised treatment of patients with different gene expression
profiles according to their clinical parameters (e. g. age). It is known that some genes change their expression activity
in one person over time and in different environments. Thus, there is a need for methods and systems that facilitate the
discovery of related gene profiles to clinical data.
[0008] WO 02/47007 A discloses methods, devices and systems for classifying genetic conditions, diseases, tumors
etc., and/or for predicting genetic diseases, and/or for associating molecular genetic parameters with clinical parameters
and/or for identifying tumors by gene expression profiles etc. The disclosed methods, devices and systems have the
steps of providing molecular genetic data and/or clinical data; automatic classification, prediction, association and/or
identification by means of a supervising machine learning system.
[0009] Kasabov N K et al: "DENFIS: dynamic evolving neural-fuzzy inference system and its applications for time-
series prediction" IEEE TRANSACTIONS ON FUZZY SYSTEMS IEEE USA, vol. 10, no. 2, April 2002, pages 144-154
discloses a type of fuzzy inference system denoted as dynamic evolving neural-fuzzy inference system (DENFIS), for
adaptive online and offline learning. DENFIS evolve through incremental, hybrid (supervised/unsupervised), learning,
and accommodate new input data, including new features, new classes etc., through local element tuning.
[0010] WO 02/059822 A discloses the use of Support Vector Machines (SVM) and RFE (Recursive Feature Elimination)
for the identification of patterns that are useful for medical diagnosis, prognosis and treatment. SVM-RFE can be used
with varied data sets.
[0011] WO 01/78003 A discloses a neural network module comprising an input layer comprising one or more input
nodes arranged to receive input data, a rule base layer comprising one or more rule nodes, a layer comprising one or
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more output nodes, and an adaptive component arranged to aggregate selected two or more rule nodes in the rule base
layer based on the input data. The invention also provides an adaptive learning system comprising one or more of the
neural network modules of the disclosure. The disclosure further provides related methods of implementing a neural
network module, an adaptive learning system, and a neural network computer program.

SUMMARY

[0012] The scope of the invention is defined in the appended claims.
[0013] Embodiments of this invention include novel methods for increasing the confidence of medical decision support
systems by developing independent models based on (1) gene expression data, and (2) on clinical information, and
combining them at a higher level. The method is extendable with the addition of other sources of information (e. g.
demographic). The invention is also concerned with a novel method for the discovery of relationship between gene
expression patterns and clinical parameters thus making a personalised (or a clinical group specific) treatment possible.
[0014] We have improved the prediction accuracy of a medical decision support system with the use of multiple types
or classes of information about a subject’s or patient’s condition. In certain embodiments, gene expression information
and the available clinical information are used to diagnose disease and to predict outcomes. In general, we can use
different types of classifiers/predictors that relate to different sources of information or different classes of information.
[0015] Each of the classifiers may be obtaining good results for part of the overall problem, for example, for a particular
class, but the combination of them provides better accuracy than any of them used individually.

BRIEF DESCRIPTION OF THE FIGURES

[0016] This invention is described with reference to specific embodiments thereof. A more complete understanding of
the systems and methods can be appreciated by referring to the Figures, in which:

Figure 1 depicts a general scheme of the invention for integrating gene expression information and clinical data.
Figure 2 depicts the structural diagram of an EfuNN suitable for use with the methods of the invention.
Figure 3a depicts schematically a Venn diagram showing how two models, gene information and clinical information,
can have different accuracy depending upon grouping of samples.
Figure 3b depicts a schematic diagram of how gene expression information and clinical information are correlated
according to this invention in a hierarchical fashion with each other to produce a medical decision.
Figure 4 depicts relationships between different values of Beta 1 and Beta 2 in a combined model.
Figure 5 depicts a graph of accuracy of a medical decision as a function of alpha in a model of this invention.
Figure 6 depicts a segment from the structure of a multiplayer perceptron (MLP) of this invention.

DETAILED DESCRIPTION

Medical Decision Support Systems

[0017] A combined model for an improved decision support system includes in general of three modules, one that
operates on independent microarray gene expression information, another that operates on independent clinical infor-
mation, and a third that operates on integrated gene expression and clinical information for each patient. A system may
contain one, two, or three of the described modules, but it can also contain more modules if more sources of information
are available.
[0018] Figure 1 depicts a block diagram the flow of information in a decision support system that utilizes two sources
of information, gene expression data and clinical information, for making a prognosis of the outcome of a disease and
its possible treatment. The first flow of information is used in a first classifier/predictor module that is based on gene
expression data. In certain embodiments the first classifier/predictor module can include EFuNN or Bayesian tools. The
second flow of information is processed in a classifier/predictor module based on clinical information only. In certain
embodiments, such classifier/predictor module can include an EFuNN or Bayesian tool. For a new patient, if both gene
and clinical information is available, they are entered into the corresponding modules and the results are combined in
a higher-level decision module using one or several models integrated at a higher level as it is described further in the
invention.
[0019] This higher-level integration module combines information from two or more lower modules to produce the final
prognosis for the outcome of the disease for this particular patient. Based on the suggested by the system prognosis,
the best available treatment is selected.
[0020] It can be appreciated that other systems based on multiple-class analysis can be developed using the funda-
mental methods of this invention. The number of classifier/predictor modules can depend on the number of different
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classes or types of information available.
[0021] An illustration of the method is given in Figures 2-6 where two modules are used, one based on microarray
gene expression data, and the other based on clinical information (in this case indicated as IPI). Figure 2 depicts an
embodiment of an evolving connectionist structure (ECOS) evolving fuzzy neural network (EFuNN).

Evolving Connectionist Systems

[0022] In certain embodiments, the practitioner uses an adaptive learning, evolving connectionist systems (ECOS),
in particular - an evolving fuzzy neural network system EFuNN, and also uses algorithms for gene expression profile
(rule) extraction from ECOS [3, 4] and applies the proposed novel methodology for combining gene expression processing
systems with clinical information processing systems as it is described further in the invention. The method allows for
different modes of combination of gene expression and clinical data, as well as for adding new data and modules with
time thus adjusting and improving the system. With the use of the proposed method the accuracy of the prognosis
increases.
[0023] Using one of the modes of integration, namely an evolving connectionist system ("ECOS") trained on the
integrated input vector that combines both gene expression and clinical information, rules can be extracted that relate
gene expression with clinical information, so that a personalised treatment can be applied for patients in a certain group
of clinical parameters (e.g. age) having a particular pattern of gene expressed in their tissue. Evolving connectionist
systems are multi-modular, and can be especially useful as architectures that facilitate modelling of evolving processes
and knowledge discovery. They are described further in PCT, WO 01/78003.
[0024] Briefly, an ECOS may consist of many evolving connectionist modules. An ECOS is a neural network system
that operates continuously in time and adapts its structure and functionality through a continuous interaction with the
environment and with other systems according to: (i) a set of parameters P that are subject to change during the system
operation; (ii) an incoming continuous flow of information with unknown distribution; (iii) a goal (rationale) criteria (also
subject to modification) that is applied to optimise the performance of the system over time [7].
[0025] Evolving connectionist systems can have the following specific characteristics:

(1) They can evolve in an open space, not necessarily of fixed dimensions.
(2) They can learn in on-line, pattern mode, incremental learning, fast learning - possibly by one pass of data
propagation.
(3) They can learn in a life-long learning mode.
(4) They can learn as both individual systems, and evolutionary population systems.
(5) They can have evolving structures and use constructive learning.
(6) They can learn locally and locally partition the problem space, thus allowing for a fast adaptation and tracing the
evolving processes over time.
(7) They can facilitate different kinds of knowledge, mostly combined memory based, statistical and symbolic knowl-
edge.

[0026] Two distinct phases are in an ECOS operation. During a first learning phase, data vectors are fed into the
system one by one with their known output values. Il a second phase (recall), a new vector is presented to the system
and it calculates the output values for it.
[0027] There are different models of ECOS. One model, evolving fuzzy neural networks (EFuNN), is presented in
Figure 2. This model can be used for both classification tasks and prediction tasks.
[0028] While a "neural network module" may refer to any neural network satisfying the requirements of the aspects
of the invention the use of an ECOS neural network is desirably used in certain embodiments. In some of these embod-
iments, a neural network is exemplified in the PCT publication WO 01/78003.The algorithm describing the neural network
is described further in WO 01/78003, and is set out schematically below.

EFuNN Architecture

[0029] EFuNNs useful for embodiments of this invention can have a five-layer structure (Figure 2). Nodes and con-
nections are created/connected as data examples are presented. An optional short-term memory layer can be used
through a feedback connection from the rule (also called, case) node layer. The layer of feedback connections could be
used if temporal relationships of input data are to be memorized structurally.
[0030] The input layer represents input variables. The second layer of nodes (fuzzy input neurons, or fuzzy inputs)
represents fuzzy quantification of each input variable space. For example, two fuzzy input neurons can be used to
represent "small" and "large" fuzzy values. Different membership functions (MF) can be attached to these neurons (e.g.,
triangular, Gaussian, etc. [6, 7]. The number and the type of MF can be dynamically modified. The task of the fuzzy input
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nodes is to transfer the input values into membership degrees to which they belong to the corresponding MF. The layers
that represent fuzzy MF are optional, as a non-fuzzy version of EFuNN can also be evolved with only three layers of
neurons and two layers of connections.
[0031] The third layer contains rule (case) nodes that evolve through supervised and/or unsupervised learning. The
rule nodes represent prototypes (exemplars, clusters) of input-output data associations that can be graphically repre-
sented as associations of hyper-spheres from the fuzzy input and the fuzzy output spaces. Each rule node r is defined
by two vectors of connection weights - W1(r) and W2(r), the latter being adjusted through supervised learning based on
the output error, and the former being adjusted through unsupervised learning based on similarity measure within a local
area of the problem space. A linear activation function, or a Gaussian function, is used for the neurons of this layer.
[0032] The fourth layer of neurons represents fuzzy quantization of the output variables, similar to the input fuzzy
neuron representation. Here, a weighted sum input function and a saturated linear activation function is used for the
neurons to calculate the membership degrees to which the output vector associated with the presented input vector
belongs to each of the output MFs. The fifth layer represents the values of the output variables. Here a linear activation
function is used to calculate the defuzzified values for the output variables.
[0033] A partial case of EFuNN would be a three layer network without the fuzzy input and the fuzzy output layers. In
this case a slightly modified versions of the algorithms described below are applied, mainly in terms of measuring
Euclidean distance and using Gaussian activation functions.
[0034] Evolving learning in EFunNs is based on either of the following two assumptions:

(1) No rule nodes exist prior to learning and all of them are created (generated) during the evolving process; or
(2) There is an initial set of rule nodes that are not connected to the input and output nodes and become connected
through the learning (evolving) process. The latter case is more biologically plausible as most of the neurons in the
human brain exist before birth, and become connected through learning, but still there are areas of the brain where
new neurons are created during learning if "surprisingly" different stimuli from previously seen are presented. The
EFuNN evolving algorithm presented in Figure 2b does not make a difference between these two cases.

[0035] Each rule node, e.g. rj, represents an association between a hyper-sphere from the fuzzy input space and a
hyper-sphere from the fuzzy output space (see fig.2a), the W1(rj) connection weights representing the co-ordinates of
the centre of the sphere in the fuzzy input space, and the W2 (rj) - the co-ordinates in the fuzzy output space. The radius
of the input hyper-sphere of a rule node rj is defined as Rj=1- Sj, where Sj is the sensitivity threshold parameter defining
the minimum activation of the rule node rj to a new input vector x from a new example (x,y) in order the example to be
considered for association with this rule node.
[0036] The pair of fuzzy input-output data vectors (xf, yf) will be allocated to the rule node rj if xf falls into the rj input
receptive field (hyper-sphere), and yf falls in the rj output reactive field hyper-sphere. This is ensured through two
conditions, that a local normalised fuzzy difference between xf and W1(rj) is smaller than the radius Rj, and the normalised
output error Err= iy - y’i/ Nout is smaller than an error threshold E. Nout is the number of the outputs and y’ is the
produced by EFuNN output. The error parameter E sets the error tolerance of the system.
[0037] Another example of a neural network module for some aspects of the invention is an evolving classification
function ("ECF"), which can be used to classify data. The learning sequence of each iteration of an ECF is described in
the following steps:

1) if all vectors have been inputted, finish the current iteration; otherwise, input a vector from the data set and
calculate the distances between the vector and all rule nodes already created;
2) if all distances are greater than a max-radius parameter, a new rule node is created. the position of the new rule
node is the same as the current vector in the input data space and its radius is set to the min-radius parameter, and
then go to step 1; otherwise:
3) if there is a rule node with a distance to the current input vector less then or equal to its radius and its class is
the same as the class of the new vector, nothing will be changed and go to step 1; otherwise:
4) if there is a rule node with a distance to the input vector less then or equal to its radius and its class is different
from those of the input vector, its influence field should be reduced. The radius of the new field is set to the larger
value from the distance minus the min-radius, and the min-radius.
5) if there is a rule node with a distance to the input vector less then or equal to the max-radius, and its class is the
same to the vector’s, enlarge the influence field by taking the distance as the new radius if only such enlarged field
does not cover any other rule node which has the different class; otherwise, create a new rule node the same way
as in step 2, and go to step 1.

[0038] A recall (classification phase of new input vectors) in ECF is performed in the following way:
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1) if the new input vector lies within the field of one or more rule nodes associated with one class, the vector belongs
to this class;
2) if the input vector lies within the fields of two or more rule nodes associated with different classes, the vector will
belong to the class corresponding the closest rule node.
3) if the input vector does not lie within any field, then there are two cases: (1) one-of-n mode: the vector will belong
to the class corresponding the closest rule node; (2) m-of-n mode: take m highest activated by the new vector rule
nodes, and calculate the average distances from the vector to the nodes with the same class; the vector will belong
to the class corresponding the smallest average distance.

[0039] The above-described ECF for classification has several parameters that need to be optimized according to the
data set used. These are:

1) maximum radius
2) minimum radius
3) number of membership functions (mf)
4) m-of-n value
5) number of iterations for the data presentation during learning phase.

[0040] These parameters can be optimized with the use of evolutionary computation methods, or other statistical
methods, as described in [7].
[0041] An important characteristic of ECOS is that they can be used to extract rules that associate input variables
(e.g. genes) to output variables (e.g. class categories). Each node in the hidden layer of the ECOS represents the center
of a cluster of similar samples and can be expressed semantically as a rule. Each rule relates to the pattern of input
feature levels for one or more samples belonging to a particular class from the data set. An example of what a rule might
look like when extracted from the EFuNN is shown below:

IF VAR1 is LOW (0.80) and
VAR3 is HIGH (0.76) and
VAR12 is HIGH (0.91) and
VAR25 is LOW (0.80) and
VAR31 is LOW (0.87) and
THEN CLASS_Z is VERY LIKELY (with a membership degree of 0.92), accommodated Training Examples in this
rule are 10 out of 50, Radius of the cluster for this rule is 0.15.

[0042] The rules are then analysed in order to identify a set of variables that are significant in distinguishing between
classes. The rule extraction method described above and in reference [3] can be applied to gene expression profiling
of disease as described herein and in reference [4], to find patterns of significantly expressed genes in a cluster of
diseased tissues. We have unexpectedly found that ECOS described in PCT WO 01/78003 [3], and the profiling method
described in PCT/480030 [4], are particularly suited for complex disease profiling based not only on gene expression
information, but on a variety of information sources, including gene expression data, protein data, clinical data (for
example IPI (International Prognostic Index) number (e.g., see [1]) etc. Here we combine these sources of information
through ECOS to create new, more efficient prognostic and classification systems for medical applications. Using these
new systems and methods enable one to discover hidden relationships between sets of genes and clinical information
previously unidentifiable.

EFuNN Learning Algorithm

[0043] To implement an EFuNN learning algorithm to the methods and systems of this invention, set initial values for
the system parameters: number of membership functions; initial sensitivity thresholds (default Sj=0.9); error threshold
E; aggregation parameter Nagg - number of consecutive examples after each aggregation is performed; pruning pa-
rameters OLD an Pr; a value for m (in m-of-n mode); maximum radius limit Rmax; thresholds T1 and T2 for rule extraction.
[0044] Set the first rule node r0 to memorise the first example (x,y): 

[0045] Loop over presentations of new input-output pairs (x,y)
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    {
     Evaluate the local normalised fuzzy distance D between xf and the
     existing rule node connections W1 (formulae (1))
     Calculate the activation A1 of the rule node layer. Find the closest rule
     node rk (or the closest m rule nodes in case of m-of-n mode) to the fuzzy
     input vector xf for which A1 (rk) >= Sk (sensitivity threshold for the node
     rk),
      if there is no such a node, create a new rule node for (xf, yf)
        else
              Find the activation of the fuzzy output layer A2=W2.A1(1-
              D(W1,xf))) and the normalised output error Err= iy- y’i/ Nout.
              if Err > E
                create a new rule node to accommodate the current example
                (xf, yf)
              else
                     Update W1 (rk) and W2(rk) according to (2) and (3) (in
                     case of m-of-n system update all the m rule nodes with
                     the highest A1 activation).
     Apply aggregation procedure of rule nodes after each group of Nagg
     examples are presented.
    Update the values for the rule node rk parameters Sk, Rk, Age(rk), TA (rk).
    Prune rule nodes if necessary, as defined by pruning parameters.
     Extract rules from the rule nodes (
             }

[0046] In certain embodiments, EFuNN techniques have certain advantages when compared with the traditional sta-
tistical and neural network techniques, including: (i) they can have a flexible structure that reflects the complexity of the
data used for their training; (ii) they can perform both clustering and classification/prediction; (iii) models can be adapted
on new data without the need to be retrained on old data; (iv) they can be used to extract rules (profiles) of different sub-
classes of samples.
[0047] Figure 3a illustrates the method from Figure 1 in the notation of the set theory, where two modules C1 and C2
are used to classify two-class data (fatal and cured as described in [1]). Two models, in this case, one based on microarray
gene expression data and the other on clinical information (in this case indicated as IPI), may have different accuracy
depending on the grouping of the data samples. For example, 13 samples are predicted correctly only by module 1, 8
samples are predicted correctly by only module 2, and 33 samples are predicted correctly by the two modules. In this
case, only two modules and two classes are used, but it can be appreciated that any number of modules and any number
of classes can be used. The correctly predicted 54 samples out of 58 used in this case sets a boundary of 93% possible
classification that could be eventually achieved with the use of this model.
[0048] Figure 3b depicts a block diagram of the method from Figure 1, applied on a two-class problem (class and A
and class B as is the case described in [1]) is depicted in Figure 3a. Two modules C1 and C2 from Figure 3a for the
classification of the two classes A and B are combined in Figure 3b in a hierarchical manner.
[0049] Figure 3b depicts a three-layered system of this invention. The two modules from Figure 1 are combined in a
hierarchical manner. For example, the first module that operates on microarray gene expression data uses EFuNN, and
the second module that operates on clinical (IPI in the case) information is a Bayesian classifier. In principle, for each
of these modules any type of classifier/predictor can be used (e.g. neural networks, support vector machines, rule-based
systems, decision trees, statistical methods and the like), and in some embodiments, an ECOS of the EFuNN or ECF
type as described in this invention above.
[0050] It can be appreciated that additional layers can be applied depending on the numbers of modules and the types
of classifiers or predictors available to be used. For example, in other embodiments, neural networks, support vector
machines, rule-based systems, decision trees, and statistical methods can be used to construct a more complex medical
decision support system. Thus, it can be appreciated that medical decision support systems can have more than three
layers.
[0051] A first layer constitutes the modules themselves, each of them trained and tested with parameters optimised
on the different data sets available (the different sources of information). It may be desirable to try different classifica-
tion/prediction models for each of the modules and then chose the best one in terms of smallest residual error. Error
minimization methods are well known in the art and need not be described further herein.
[0052] A second layer constitutes classes. All the class-elements of the second layer are fully connected with the
module-elements of the first layer. A third layer in this example is the final outcome element, a combined output from
all class-elements of the second layer. The third layer element is connected fully to the previous layer elements.
[0053] Elements from the different layers are connected through connection weights β1, 1- β1, β2, 1- β2, and α as
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shown in Figure 3b. To evaluate and quantify parameter values β1, β2, and α for the combined decision support system
from Figure 3b, at least three methods can be used.

(1) The first method is based on an exhaustive search in the parameter values space, so for every combination of
the parameter values a new system is generated and tested. The parameter values that give the system the highest
accuracy are selected for the use in the medical decision support system in a clinical environment. Figure 4 shows
the accuracy of the combined system for different values of β1 and β2. We have found that the best accuracy is
achieved for certain interval values for β1 and β2. The selected values are β1= β2=0.75.

[0054] Figure 4 depicts results of such an exhaustive search method. Different values of Beta1 and Beta2 in the
combined model (see Figure 2) give different accuracy of prediction. The optimal values can be found through exhaustive
search. During the exhaustive search procedure, all values for α are tested as shown in Figure 4. The figure shows the
process of testing the exhaustive search method for finding an optimum value for α for the example model from Figure
3. A value of 0.4 was found to produce desirably improved results compared to prior methods.
[0055] Figure 5 depicts the results applying the exhaustive search method for finding an optimum value for α for the
example model from Figure 2 using the following method.
[0056] Step 1. Create 2 modules, one for gene expression data and one for clinical information data (in case of only
two modules used) through training, testing, and parameter optimisation.
[0057] Step 2. For every value of β1 & for every value of β2 & for every value of α, DO
[0058] Test the accuracy of the combined system on the whole data set.
[0059] Step 3. Chose the parameter values β1, β2, and α that give the highest accuracy of the combined system.

Example of the First Approach

[0060] For the B-Lymphoma case study [1], values for the IPI (International Prognostic Index) are available for each
of the 58 samples. Samples were stratified into 5 strata according to their IPI as follows:

Stratum 1: IPI = low: 26 samples, of which 19 belong to the cured class and 7 to the fatal class.
Stratum 2: IPI = low intermediate: 11 samples, of which 7 belong to the cured class and 4 to the fatal class.
Stratum 3: IPI = high intermediate: 17 samples, of which 4 belong to the cured class and 13 to the fatal class.
Stratum 4: IPI = high: 2 samples, of which 2 belong to the fatal class. Stratum 5: IPI = unknown: 2 samples. These
samples were assigned the same IPI number as the closest samples based on the gene expression data and on
the Euclidean distance.

[0061] Using the IPI stratification, a single prediction factor and a Bayesian classifier gives a prediction accuracy of
73.2%. Using gene expression data and an EFuNN classifier gives an accuracy of 78.5%. The combined model accuracy,
for β1= β2=0.75 and α=0.4, gives an overall accuracy of 87.5% if 56 examples are used for the first module. If the number
of the IPI examples increases the overall accuracy of the first module increases because the IPI module is independent
from the gene expression module (see reference [1]).

(2) The second method is a statistically based specialization method used for the selection of optimal parameter
values. Each class output of each module is weighted with the normalised class accuracy calculated for this module
across all the modules in the system. Continuous output values for the class outputs (e.g. 0.8 rather than 1) are
multiplied by the weights, and the sum of the weighted output values from all modules constitutes the final output
value for the class. A class is chosen with the highest output value. This is similar to the principle of statistically
based specialisation [5]. The method is illustrated on the following example.

Example of the Second Approach

[0062] Step 1: Assume that the combined model consists of three modules:

1) A gene expression data module (e.g. N genes as inputs and 2 classes as outputs, class A and class B);
2) A clinical information module (e.g. M inputs, binary encoding of the clinical information, and 2 classes as outputs);
and
3) An integrated information module (e.g. N+M inputs: the N gene expression variables plus the M clinical input
variables and 2 class outputs)

[0063] Step 2: Assume that each of the three modules produces different prognostic accuracy as follows: module one:
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90% (88 and 92 for each class); module two: 70% (65 and 75 for each class respectively) and module 3: 80% (75% and
85% for each class respectively). By using a combined output at a higher-level decision module for the final prognostic
evaluation, the total accuracy increases to 92% as explained below.
[0064] Having quantified the accuracy of each of the three modules for each of the two classes, the following connection
weights are calculated for each of the three modules for class A:

Module 1: 0.88/2.28 =0.39
Module 2: 0.65/2.28= 0.28
Module 3: 0.75/2.28 = 0.33

[0065] The following weights are calculated for each of the three modules for class B:

Module 1: 0.92/2.62=0.35;
Module 2: 0.85/2.62=0.325
Module 3: 0.85/2.62 =0.325;

[0066] Based on the above coefficients, one calculates the accuracy of the classification of samples for each of the
classes A and B, for example, 0.8 and 0.9.
[0067] The final decision in the third layer output element can be taken either as the maximum value between the
calculated class-output for each class elements or by applying a calculated third layer coefficients for combining the
class outputs as follows:

Class A - to third layer output coefficient: 0.8 / (0.8 +0.9) = 0.47;
Class B - to third layer output coefficient: 0.9 / (0.8 +0.9) = 0.53;

[0068] If for a new input vector the corresponding output values for each class of each of the three modules are
respectively: 0.6 and 0.5; 0.4 and 0.6; 0.5 and 0.5, the output value for class A is calculated as: 

[0069] The output value for class B is calculated as: 

[0070] The predicted outcome according to the maximizing strategy is class B.
[0071] According to the weighed output strategy, the output will be B again as output class A will get final evaluation
of 0.51 x 0.47=0.24, and output class B will get an evaluation of: 0.53 x 0.53=0.28.

(3) In a third method, a combined system is interpreted as a multi-layer perceptron as described below and shown
in Figure 6. Optimal parameter values are calculated through a learning procedure utilising the error back-propagation
algorithm (see for example the algorithm from p.276 [6]) also shown in Figure 7.

[0072] Parameter values attached to the connections in a multi-layer perceptron (MLP) neural network structure (see
the example shown in Figure 3b) are calculated as connection weights during training of the neural network.
[0073] The invention is also concerned with the discovery of patterns of gene expression in clusters of tissues (groups
of samples that have a similar gene expression profiles) related to particular pattern of clinical parameters (e.g. low IPI,
old age and low blood pressure). This is an important discovery because different clinical groups may have different
patterns of gene expression that makes the process of finding common genes and drug targets for the whole population
impossible. The method is described below:

Methods for Discovering Patterns of Genes Related to a Group of Patients Characterized by a Particular Clinical 
Parameter

[0074] One can also use an ECOS module with the combined input vector (N gene expression variables and M clinical
variables) to derive patterns of gene expression as they relate to clinical findings. After a module is trained on data as
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described above, rules that represent clusters of data in the input space (which is the combined gene expression and
clinical variables space) can be extracted as described above. As applied to a combined inputs module, these rules will
have both gene variables and clinical variables that define the cluster of data samples expressed by this rule, thus
uncovering the relationship between the genes and the clinical parameters as captured in the rule. For example:

IF VAR1 =Gene1 is LOW (0.80) and
VAR3=Gene15 is HIGH (0.76) and
VAR12= Gene 32 is HIGH (0.91) and
VAR25= Age is LOW (0.80) and
VAR31= IPI is LOW (0.87)
THEN CLASS Survive is VERY LIKELY (with a membership degree of 0.9), accommodated training examples in
this rule are 7 out of 26. Radius of the cluster for this rule is 0.2.

[0075] The above rule is interpreted as follows: for young people with low IPI, if gene 1 is low expressed and genes
15 and 32 are highly expressed, than the chances of the person to survive after the treatment are very high, measured
as 90%.
[0076] Figure 6 depicts a segment from the structure of a multiplayer perceptron (MLP). Using the structure shown in
Figure 6, one can implement an algorithm as follows:

Forward pass:

BF1. Apply an input vector x and its corresponding output vectory (the desired output).

BF2. Propagate forward the input signals through all the neurons in all the layers and calculate the output signals.

BF3. Calculate the Errj for every outputneuronj as for example: Errj = yj - oj, where yj is the jth element of the
desired output vector y.

Backward pass:

BB1. Adjust the weights between the intermediate neurons i and output neurons j according to the calculated
error: Δwij(t+1)= = 1rate. oj (1-oj). Errj. oi, + momentum. Δwij (t)

BB2. Calculate the error Erri for neurons i in the intermediate layer: Erri = Σ Errj. wij
BB3. Propagate the error back to the neurons k of lower level: Δwki(t+1)=1rate.oi(1-oi). Erri.xk + momentum. Δwki(t)

[0077] The descriptions and examples herein are intended to illustrate embodiments of the invention, and are not
intended to be limiting to the scope of the invention. Other embodiments based on the descriptions, examples and
Figures can be produced and practiced by those of ordinary skill in the art, without departing from the scope of the
present invention as defined by the claims.
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Claims

1. A computer-implemented method for supporting a medical decision, characterized by comprising:

providing a three layer system comprising:

a. a first layer comprising:

i. a first predictor module-element that operates on microarray gene expression data using an evolving
fuzzy neural network;
ii. a second predictor module-element that operates on clinical information using a Bayesian classifier;

b. a second layer comprising the following class-elements:

i. Class A; and
ii. Class B; and

c. a third layer consisting of an output element for providing a combined output by combining the output
from all class-elements of the second layer, wherein:

said third layer output element is connected fully to the class-elements of the second layer through
connection weights α and 1- α;
all the class-elements of the second layer are fully connected with the module-elements of the first
layer through connection weights β1,1- β1, β2 and 1-β2; and
said connection weights are such as to minimize an error of said combined output such that said
combined output has a greater accuracy than either Class A output or Class B output individually,
wherein:

the parameter values β1, β2, and α are evaluated and quantified for the three layer system using
an exhaustive search method according to the steps:

i. create said first predictor module-element and said second predictor module-element through
training, testing, and parameter optimisation;
ii. for every value of β1 and for every value of β2 and for every value of α, test the accuracy of
the three layer system for the whole of a data set; and
iii. choose the parameter values β1, β2, and α that give the highest accuracy of the three layer
system;

the parameter values β1, β2, and α are evaluated and quantified for the three layer system according
to a statistically based specialization method, where each class output of each module is weighted
with the normalized class accuracy calculated for this module across all the modules in the system,
wherein continuous output values for the class outputs are multiplied by the weights, and the sum
of the weighted output values from all modules constitutes the final output value for the class, and
wherein a class is chosen with the highest output value; or
the three layer system is interpreted as a multi-layer perceptron, where the parameter values β1,
β2, and α are evaluated and quantified for the three layer system through a learning procedure
utilising the error back-propagation algorithm, wherein parameter values attached to the connec-
tions in a multi-layer perceptron neural network structure are calculated as connection weights
during training of the neural network.

2. The method of claim 1, in the case where the three layer system is interpreted as a multi-layer perceptron, wherein
said algorithm is implemented as follows:

forward pass:

BF1: apply an input vector x and its corresponding output vector y (the desired output),
BF2: propagate forward the input signals through all the neurons in all the layers and calculate the output
signals,
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BF3: calculate the ErrJ for every output neuron j as ErrJ = yj - oj, where yj is the jth element of the desired
output vector y; and

backward pass:

BB1: adjust the weights between the intermediate neurons i and output neurons j according to the calculated
error: 

BB2 : calculate the error Errj for neurons i in the intermediate layer : 

BB3: propagate the error back to the neurons k of lower level: 

3. The method of claim 1, in the case where the parameter values are evaluated and quantified using the exhaustive
search method, wherein β1 = β2 = 0.75, and α = 0.4.

4. A medical decision support system for performing the method according to claim 1, 2 or 3, comprising:

a processor;
a memory device;
a first input for acquiring said microarray gene expression data, said first input being associated with said first
predictor module-element;
a second input for acquiring said clinical information, said second input being associated with said second
predictor module-element; and
a program available to said processor for causing said processor to carry out the method according to claim 1,
2 or 3.

Patentansprüche

1. Computer-implementiertes Verfahren zur Unterstützung einer medizinischen Entscheidung, dadurch gekennzeich-
net, dass es umfasst:

Bereitstellen eines Dreischichtensystems, umfassend:

a. eine erste Schicht, umfassend:

i. ein erstes Prädiktormodulelement, das mit Mikroarray-Genexpressionsdaten unter Verwendung eines
Entwicklungs-Fuzzy-Neuralnetzwerks arbeitet;
ii. ein zweites Prädiktormodulelement, das mit klinischen Informationen unter Verwendung eines Bay-
esian-Klassifizierers arbeitet;

b. eine zweite Schicht, die die folgenden Klasse-Elemente umfasst:

i. Klasse A und
ii. Klasse B, und

c. eine dritte Schicht, bestehend aus einem Output-Element zur Bereitstellung eines kombinierten Outputs
durch Kombinieren des Outputs von allen Klasse-Elementen der zweiten Schicht, wobei:
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das dritte Schicht-Output-Element vollständig mit den Klasse-Elementen der zweiten Schicht durch
Verbindungsgewichte α und 1 - α verbunden ist;
alle Klasse-Elemente der zweiten Schicht vollständig mit den Modulelementen der ersten Schicht durch
Verbindungsgewichte β1, 1-β1, β2 und 1-β2 verbunden sind und
die genannten Verbindungsgewichte so sind, dass sie einen Fehler des kombinierten Outputs mini-
mieren, so dass der kombinierte Output eine größere Genauigkeit als Klasse-A-Output oder Klasse-
B-Output einzeln hat, wobei:

die Parameterwerte β1, β2 und α für das Dreischichtensystem unter Verwendung eines umfassen-
den Suchverfahrens gemäß den folgenden Schritten evaluiert und quantifiziert werden:

i. Schaffen des ersten Prädiktormodulelements und des zweiten Prädiktormodulelements
durch Training, Untersuchung und Parameteroptimierung;
ii. für jeden Wert von β1 und für jeden Wert von β2 und für jeden Wert von α Untersuchen der
Testgenauigkeit des Dreischichtensystems für die Gesamtheit eines Datensatzes und
iii. Auswählen der Parameterwerte β1, β2 und α, die die höchste Genauigkeit des Dreischich-
tensystems ergeben;

wobei die Parameterwerte β1, β2 und α für das Dreischichtensystem gemäß einem statistisch
basierten Spezialisierungsverfahren evaluiert und quantifiziert werden, wobei jeder Klasse-Output
jedes Moduls mit der normalisierten Klasse-Genauigkeit, die für dieses Modul errechnet wurde,
durch alle Module im System gewichtet wird, wobei kontinuierliche Output-Werte für die Klasse-
Outputs mit den Gewichten multipliziert werden und die Summe der gewichteten Output-Werte
von allen Modulen den End-Output-Wert für die Klasse bildet und wobei eine Klasse mit dem
höchsten Output-Wert ausgewählt wird, oder
das Dreischichtensystem als ein Mehrschichten-Perzeptron interpretiert wird, wobei die Parame-
terwerte β1, β2 und α für das Dreischichtensystem durch einen Lernvorgang, der den Fehler-Back-
Propagations-Algorithmus nutzt, evaluiert und quantifiziert werden, wobei die Parameterwerte, die
mit den Verbindungen in einer Mehrschichten-Perzeptron-Neuralnetzwerkstruktur verknüpft sind,
während eines Trainings des Neuralnetzwerkes als Verbindungsgewichte errechnet werden.

2. Verfahren gemäß Anspruch 1, wobei in dem Fall, in dem das Dreischichtensystem als ein Mehrschichten-Perzeptron
interpretiert wird, der Algorithmus wie folgt implementiert wird:

Vorwärtspass:

BF1: Anwenden eines Input-Vektors x und seines entsprechenden Output-Vektors y (der gewünschte Out-
put),
BF2: Fortschreiten der Inputsignale nach vorne durch alle Neuronen in allen Schichten und Errechnen der
Output-Signale,
BF3: Errechnen des ErrJ für jedes Output-Neuron j als ErrJ = yj - oj, worin yj das j - te Element des gewünschten
Output-Vektors y ist, und

Rückwärtspass:

BB1: Einstellen der Gewicht zwischen den Zwischenneuronen i und den Output-Neuronen j entsprechend
dem errechneten Fehler: 

BB2: Errechnen des Fehlers Errj für Neuronen i in der Zwischenschicht: 

BB3: Fortschreiten des Fehlers zurück zu den Neuronen k vom niedrigeren Level: 
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3. Verfahren gemäß Anspruch 1, wobei im Fall, in dem die Parameterwerte unter Verwendung des umfassenden
Suchverfahrens evaluiert und quantifiziert werden, β1 = β2 = 0,75 und α = 0,4.

4. System zur Unterstützung einer medizinischen Entscheidung zur Durchführung des Verfahrens gemäß Anspruch
1, 2 oder 3, umfassend:

einen Prozessor;
eine Speichereinheit;
einen ersten Input zur Erfassung der Mikroarray-Genexpressionsdaten, wobei der erste Input mit dem ersten
Prädiktormodulelement assoziiert ist;
einen zweiten Input zur Erfassung der klinischen Informationen, wobei der zweite Input mit dem zweiten Prä-
diktormodulelement assoziiert ist, und
ein Programm, das für den Prozessor verfügbar ist, zur Bewirkung, dass der Prozessor das Verfahren gemäß
Anspruch 1, 2 oder 3 ausführt.

Revendications

1. Procédé mis en oeuvre par ordinateur pour servir d’aide à la décision médicale, caractérisé en ce qu’il comprend :

la mise en place d’un système à trois couches, comprenant :

a. une première couche, comportant :

i. un premier élément-module prédicteur qui fonctionne sur la base de données d’expression génétique
en micro-réseau en utilisant un réseau neuro-flou évolutif;
ii. un deuxième élément-module prédicteur qui fonctionne sur la base d’informations cliniques en uti-
lisant un classifieur bayésien;

b. une deuxième couche comportant les éléments de classe suivants :

i. Classe A; et
ii. Classe B; et

c. une troisième couche constituée d’un élément de sortie pour fournir des données de sortie combinées
en combinant les données de sortie de tous les éléments de classe de la deuxième couche, où

ledit élément de sortie de troisième couche est connecté intégralement aux éléments de classe de la deuxième
couche, par l’intermédiaire de poids de connexion α et 1-α ;
tous les éléments de classe de la deuxième couche sont connectés intégralement aux éléments-modules de
la première couche, par l’intermédiaire de poids de connexion ß1, 1-ß1, ß2 et 1-ß2 ; et
lesdits poids de connexion sont tels qu’ils réduisent à un minimum une erreur desdites données de sortie
combinées, de manière à ce que lesdites données de sortie combinées présentent une exactitude supérieure
aussi bien à celle des données de sortie de Classe A que des données de sortie de Classe B, individuellement,
où :

les valeurs de paramètres ß1, ß2 et α sont évaluées et quantifiées pour le système à trois couches en
utilisant un procédé de recherche exhaustive, conformément aux étapes suivantes :

i. création dudit premier élément-module prédicteur et dudit deuxième élément-module prédicteur, par
apprentissage, essai et optimisation de paramètres;
ii. pour chaque valeur de ß1 et pour chaque valeur de ß2 et pour chaque valeur de α, essai du système
à trois couches pour l’ensemble d’un jeu de données; et
iii. choix des valeurs de paramètres ß1, ß2 et α, qui offrent la plus grande exactitude du système à trois
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couches;

les valeurs de paramètres ß1, ß2 et α sont évaluées et quantifiées pour le système à trois couches, con-
formément à un procédé de spécialisation s’appuyant sur des statistiques, où toutes les données de sortie
de classe de chaque module sont pondérées avec l’exactitude de classe normalisée calculée pour ce
module à travers tous les modules dans le système, où des valeurs de sortie continues pour les données
de sortie de classe sont multipliées par les coefficients de pondération, et la somme des valeurs de sortie
pondérées de tous les modules constitue la valeur de sortie finale pour la classe, et où une classe est
choisie avec la valeur de sortie la plus élevée; ou
le système à trois couches est interprété en tant que perceptron multicouche, où les valeurs de paramètres
ß1, ß2 et α sont évaluées et quantifiées pour le système à trois couches, à travers une procédure d’appren-
tissage utilisant l’algorithme de rétropropagation de l’erreur, où les valeurs de paramètres attachées à la
connexion dans une structure de réseau neuronal à perceptron multicouche sont calculées en tant que
poids de connexion pendant l’apprentissage du réseau neuronal.

2. Procédé selon la revendication 1, dans le cas où le système à trois couches est interprété en tant que perceptron
multicouche, où ledit algorithme est mis en oeuvre de la manière suivante :

Passage avant :

BF1 : appliquer un vecteur d’entrée x et son vecteur de sortie y correspondant (la sortie souhaitée),
BF2 : propager vers l’avant les signaux d’entrée à travers tous les neurones dans toutes les couches et
calculer les signaux de sortie,
BF3 : calculer ErrJ pour chaque neurone de sortie j, en tant que ErrJ = yj - oj, où yj est le jème élément du
vecteur de sortie y souhaité; et

Passage arrière :

BB1 : régler les poids entre les neurones intermédiaires i et les neurones de sortie j, en fonction de l’erreur
calculée : 

BB2 : calculer l’erreur Errj pour les neurones i dans la couche intermédiaire : 

BB3 : propager l’erreur en arrière vers les neurones k du niveau inférieur : 

3. Procédé selon la revendication 1, dans le cas où les valeurs de paramètres sont évaluées et quantifiées en utilisant
la méthode de recherche exhaustive, où ß1 = ß2 = 0,75, et α = 0,4.

4. Système d’aide à la décision médicale destiné à mettre en oeuvre le procédé selon la revendication 1, 2 ou 3,
comprenant :

un processeur;
un dispositif de mémoire;
une première entrée destinée à acquérir des données d’expression génétique en micro-réseau, ladite première
entrée étant associée audit premier élément-module prédicteur;
une deuxième entrée destinée à acquérir lesdites informations cliniques, ladite deuxième entrée étant associée
audit deuxième élément-module prédicteur; et
un programme disponible pour ledit processeur en vue de faire en sorte que ledit processeur exécute le procédé
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selon la revendication 1, 2 ou 3.
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