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s0005 INTRODUCTION

p0005 Themost fascinating aspect of transcriptomics is that the
entire set of messenger RNA (mRNA)molecules or tran-
scripts produced in a population of cells or in tissues can
be analyzed simultaneously. The present microarray
technology produces devices equivalent to the size of a
stamp for gene expression profiling. Analyzing the tran-
scriptome is a challenging task, since the mRNA content
of a biological entity is heterogeneous and can vary sub-
stantially. The abundance of individual transcripts varies
from a few copies to hundreds or thousands of copies
per cell [1]. The kinds and copy numbers of individual
transcripts expressed at a given time depend on the
developmental stage, on external conditions, and envi-
ronmental stimuli. Quantitative and qualitative altera-
tions of mRNAs can be directly linked to the molecular
mechanism of disease or reflect the downstream conse-
quences of these disease processes.

p0010 This chapter outlines the methodological prerequi-
sites for transcriptome analysis and describes typical
applications in molecular cell biology and pathology.
During the last three decades, technology development
and experimental approaches aiming at mRNA analysis
were significantly fueled by molecular cancer research.
One of the main reasons for progress in this area was
the availability of relevant cell lines that could be propa-
gated indefinitely and served as reproducible sources of
RNA and of sufficient quantities of normal and diseased
tissues. A strong motivation lay in the demand for distin-
guishing as many transcripts as possible in normal and
tumorigenic cells to understand cancer-specific altera-
tions in gene expression. While early work along these

lines was mostly related to pathogenesis, more recent
applications deal with diagnostic issues such as tumor
outcome, prognosis, and therapy response prediction.

s0010GENE EXPRESSION PROFILING:

THE SEARCH FOR CANDIDATE

GENES INVOLVED IN PATHOGENESIS

p0015Todate,microarray-basedexpressionprofiling is accepted
as the gold standard in transcriptome analysis. Microarray
technology has gradually improved over the last decade
both in academic and industrial/commercial settings to
meet high technical and bioinformatic quality standards.
Before microarrays were available for most researchers
in sufficient quantity and quality (as well as affordable at
reasonable costs), alternative techniques were instrumen-
tal in answering questions related to the quantity of
transcripts expressed ubiquitously, to identifying tissue-
specific expression patterns and candidate genes related
to disease.

s0015Early Gene Expression Profiling Studies

p0020Intriguingly, the question of how many transcription
units distinguish normal from tumor cells, expectedly
to be a domain of transcriptomics using microarrays,
was addressed nearly at the same time when techniques
in molecular biology permitted the identification and
thorough analysis of individual mRNAs. In 1977 and
1980, researchers described the northern blot technique
for transferring electrophoretically separated RNA from
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an agarose gel to paper strips, the coupling of the RNA
to the paper surface and the detection of specific RNA
bands by hybridization with 32P-labeled DNA probes
followed by autoradiography for the first time [2,3].
A report published in 1980 provided evidence for the
complexity of cellular transformation at the RNA level,
when scientists had studied the RNA pool of chicken
embryonic breast muscle cells infected with Rous sar-
coma virus (RSV). The authors of the paper compared
the hybridization kinetics of nuclear RNA preparations
from normal and RSV-transformed cells, respectively,
incubated in solution with tracer amounts of labeled
single-copy chicken DNA. Based on the assumption that
an average transcription unit is about 10 times larger
than its corresponding mRNA, the authors concluded
that the observed increase in the number of stable tran-
scription products in transformed cells relative to nor-
mal cells was equivalent to approximately 1,000
transcription units [4]. Several years later, other scien-
tists used a more sophisticated approach for contrasting
mRNA patterns of cellular material obtained from colon
tumor biopsies [5]. The researchers took advantage of
the molecular cloning techniques that allowed the estab-
lishment of a set of complementary DNAs (cDNAs)
obtained by reverse transcription of mRNA. The refer-
ence cDNA library of some 4,000 clones represented
abundant and middle abundant RNA sequences. Repli-
cas of the library were then hybridized to 32P-labeled
cDNA probes synthesized from polyadenylated RNA
from small biopsies obtained from normal and neoplas-
tic intestinal mucosa. The comparison of normal colonic
mucosa with carcinomas showed expression alterations
of �7% of the cloned sequences and was extrapolated
to the entire, yet unknown, set of transcripts. The num-
ber of alterations was smaller between normal mucosa
and benign adenomas indicating that transcriptional
changes accumulate during cancer progression.

s0020 cDNA Libraries and Data Mining

p0025 Further advances in deciphering cancer-related tran-
scripts were driven by increased efforts in cDNA cloning,
and sequence analysis. Collections of cDNAs were
obtained from various normal and diseased tissues, as
well as from reference cell lines. The functional charac-
terization of transcribed sequences progressed at the
same time. However, due to the complexity of gene func-
tion in biological systems, functional information lagged
significantly behind sequence information. The large
cDNA collections deposited in expression databases
often provided only partial sequence information. The
corresponding cDNAs known to be expressed in various
tissues or cell types analyzed were designated expressed
sequence tags (or ESTs). With increasing entries into
these EST catalogues, it became feasible to merge over-
lapping partial sequences and eventually to define full-
length open-reading frames (ORFs). As a practical con-
sequence of the global gene expression information
provided by cDNA/EST databases, an approach termed
the electronic northern became feasible. The electronic
northern analysis facilitated prediction of expression

changes between normal and diseased tissues. Extensive
mining of EST databases using stringent statistical tests
permitted identification of candidate genes whose
altered (stimulated or reduced) expression correlated
with the disease state [6].

s0025cDNA Subtraction

p0030The data mining approach was limited by the existing
sequence information and the available gene annota-
tions. To circumvent this bias, researchers established
several elegant methods that permitted enrichment of
mRNA sequences (or cDNAs) associated with special
experimental conditions such as cellular stress or onco-
genic transformation, or with particular cellular fea-
tures such as tumorigenicity or metastatic potential.
The methods established were cDNA subtraction, differ-
ential display PCR (DD), representational difference
analysis, and serial analysis of gene expression (SAGE).

p0035In general, cDNA subtraction is a method for separat-
ing cDNA molecules that distinguish related cDNA sam-
ples, for instance, prepared by reverse transcription of
mRNA from normal precursor cells and derived neoplas-
tically transformed cells. The basis of subtraction is that
cDNAs prepared from two different cell types to be com-
pared are rendered single-stranded, subsequently mixed,
and incubated to allow annealing of sequences common
to both cell species. These sequences will hybridize, while
sequences unique to one of the cells will stay single-
stranded. In the classical subtraction approach, single-
stranded and double-stranded cDNAs were separated by
hydroxylapatite chromatography [7]. Subsequently, the
unique cDNA fragments are cloned and sequenced.
The major drawback of this method is that the enrich-
ment of differentially expressed sequences usually does
not exceed a factor of 100, that abundant mRNAs
(cDNAs) are over-represented due to the lack of normal-
ization, and that rare transcripts are not detected at all.
These inherent disadvantages were overcome by develop-
ment of a method called suppression subtractive hybridi-
zation (SSH), a PCR-based subtraction method that
combines normalization and subtraction into a single
procedure. Differential amplification of unique cDNA
fragments is achieved by ligating different primers to
each restricted cDNA originating from the cell types to
be compared prior to the annealing step and the PCR.
The normalization step equalizes the abundance of
cDNA fragments within the target population, and the
subtraction step excludes sequences that are common
to the cell populations being contrasted. Using this
method, the probability of recovering differentially
expressed cDNAs of low abundance is largely increased
(by a factor of 1,000 or more) [8]. For example, SSH
was used to report on transformation target genes related
to oncogenic RAS signaling on a genome-wide scale [9]
(Figure 7.1). Representational difference analysis
(RDA) is a technique that combines subtractive hybridi-
zation with PCR-mediated kinetic enrichment for the
detection of differences between two complex genomes
[10]. Later, the protocol was modified to look for differ-
ences in transcript expression as well [11].
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s0030 Differential Display PCR

p0040 Differential display PCR is a method to separate and
clone individual mRNAs that are differentially expressed
by means of the polymerase chain reaction. A set of oli-
gonucleotide primers is used, one being anchored to
the polyadenylated tail of a subset of mRNAs, the other
being short and arbitrary in sequence to allow annealing
at different sites relative to the first primer. The mRNA
subpopulations defined by the primer pairs are ampli-
fied after reverse transcription and the products resolved
(displayed) onDNA sequencing gels. Differential display
visualizes mRNA compositions of cells by displaying sub-
sets of mRNAs as short cDNAs. The beauty of this
approach is that many samples can be run in parallel to
reveal differences in mRNA composition [12]. The dif-
ferentially expressed cDNA fragments can be recovered
by cloning techniques. An early application of DD was
the identification of genes differentially expressed in
breast cancer versus mammary epithelial cells [13].

s0035 Serial Analysis of Gene Expression

p0045 While the previously discussed approaches directly aim at
identifying important differences between closely related
cell types, the key element of the SAGEmethod is to rep-
resent all transcripts in a given cell type in a quantitative
manner. The basic principle of SAGE is that short nucle-
otide sequence tags of 10 to 14 base pairs contain suffi-
cient information to uniquely identify transcripts.
Moreover, concatenation of these short sequence tags
permits an efficient analysis of transcripts serially by

sequencing of multiple tags within a single cloned ele-
ment [14]. More recent variants of the method are based
on longer sequence tags and integrate microarray tech-
nology [15]. Two years after the initial publication of
the method, Johns Hopkins University researchers for
the first time reported on gene expression profiles in nor-
mal and cancer cells based on SAGE [14]. The authors
confirmed previous findings on RNA abundance in cells
that had been obtained with the help of Rot curves that
display RNA-DNA reassociation kinetics [16]. The total
number of transcripts varied from approx. 14,000 to
20,000 between cell populations. Most transcripts (86%)
were expressed at fewer than 5 copies per cell; however,
the bulk of the mRNA mass consisted of more abundant
transcripts (more than 5 copies per cell). The relative
expression levels of transcripts were determined by divid-
ing the number of tags observed in tumor and normal
tissue. Most transcripts were expressed at similar levels.
However, 548 of 14,000 to 20,000 transcripts were over-
represented or underrepresented in tumor versus nor-
mal cells. The average difference in expression for these
transcripts was 15-fold. About 20% of themwere less than
3-fold different. The authors also addressed the issue of
whether cultured cell lines, frequently used in molecular
cancer research, display gene expression patterns that
mimic those found in the organ microenvironment.
Interestingly, 72% of transcripts expressed at reduced
levels in cancer specimens were also expressed at lower
levels in cell lines. Likewise, 43% of transcripts exhibiting
elevated expression in cancers were also upregulated in
cell lines. Useful links and SAGE databases can be found
at http://www.sagenet.org/.
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Figure 7.1f0005 A cDNA subtraction approach to identify genes differentially expressed upon conversion from the normal to the
transformed state. In this example, immortalized normal epithelial cells (phase contrast microscopy, magnification 100-fold)
were transformed by the KRAS oncogene.
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p0050 A procedure very similar to SAGE is used to study cellu-
lar microRNAs (miRNAs), which are short �22-nucleo-
tide segments of RNA that have been found to play an
important role in gene regulation. Small RNAs are
isolated, linkers are added to each of them, and the RNA
is converted to cDNA. Afterward the linkers containing
internal restriction sites are digested with the appropriate
restriction enzyme and the sticky ends are concatamer-
ized. The concatamers are ligated into plasmid vectors
and cloned, followed by sequencing. In this way, the
expression levels of miRNA can be quantitatively assessed
by counting the number of times they are present [17].

s0040 TRANSCRIPTOME ANALYSIS BASED ON

MICROARRAYS: TECHNICAL

PREREQUISITES

p0055 To date, microarrays are utilized by most researchers in
studies related to (i) pathogenic processes at a genome-
wide level, (ii) examination of drug effects, and (iii) elu-
cidation of clinical features of disease that cannot be
recognized by currently available molecular techniques
or conventional histopathology and immunopathology.
Microarray technology was pioneered by Pat Brown and
colleagues at Stanford University. These researchers not
only published the first applications of microarray to
study biological questions, but also described the neces-
sary technical devices in detail [18]. In this way, they con-
tributed to the rapid dissemination of the technology. In
parallel, microarray technology was developed at Affyme-
trix (Santa Clara, CA) [19]. The central element that is in
common to the various forms of these techniques is that
DNA-molecules, cDNA fragments or oligonucleotides
are arrayed and immobilized at defined positions on a
solid support or matrix. This method extends the exist-
ing technique of membrane-based arrays that were inter-
rogated using radioactively labeled cDNA. The probes
assembled on solid supports are hybridized with

complementary and fluorescent dye-labeled RNA or
DNA molecules (targets) derived from biological speci-
mens such as cells, tissues, or blood. Fluorescent dye
staining intensity after hybridization obtained within
the position of the probe is a measure of the abundance
of the corresponding nucleotide sequence in the com-
plex mixture of RNA/cDNA targets. The different kinds
of microarrays available today are distinguished by the
number, density, design, and size of oligonucleotides or
cDNA probes; the manner of chip manufacturing; and
the experimental protocols for target hybridization.

s0045Typical Workflow of a Microarray
Experiment Starting from Tissue Samples

p0060Frozen tissue samples are dissected, fixed on glass slides,
and stained. Histological characterization reveals the
composition of the tissue, including the cell types of
interest (and their frequency), the extent of necrotic
areas (which contain degraded RNA), and presence of
fatty tissue (from which RNA extraction is difficult).
Optionally, laser capture microdissection can be used
to precisely dissect the cells and tissue areas of interest.
Subsequently, RNA isolation is performed, RNA yield is
determined, and RNA quality is checked by electropho-
resis. Isolated RNA is used for synthesis of labeled sample
nucleic acid, mostly cDNA or antisense RNA (aRNA),
which is quality-controlled by absorbance measure-
ments. Most commonly, the last step is hybridization of
the fluorescent dye-labeled sample nucleic acid to the
probe DNA on the microarray (Figure 7.2).

s0050Production of Microarrays

p0065Microarrays represent a solid support (typically a glass
slide or silicon surface) onto which probes are covalently
linked using a chemical matrix (via epoxy-silane or
amino-silane). The probes are dispensed either by

Figure 7.2f0010 Laboratory workflow of a typical microarray experiment.
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contact spotting or applied as micro-droplets by techni-
ques resembling ink-jet procedures used in printing.
One of the industrial suppliers (Affymetrix Inc.) pro-
duces microarrays using photolithographic methods as
in silicone chip production. The procedure allows pro-
duction of high-density arrays containing millions of
probes covered in a partially transparent hybridization
chamber. In the original fabric, the probes are short
sequences of 25 nucleotides. Each potential target
sequence is represented with up to 11 different comple-
mentary oligonucleotides and 11 paired mismatch
probes. A mismatch probe contains a single mismatch
located directly in the middle of the 25-base probe
sequence. While the perfect match probe shows fluores-
cence only when a sample nucleic acid binds to it, the
paired mismatch probe is used to detect and eliminate
any false or contaminating fluorescence within that mea-
surement. Other industrial suppliers (such as Agilent,
Illumina, Milteny, and others) and academic facilities
use oligonucleotides of �60 nucleotides or cDNA frag-
ments to improve hybridization specificity. These micro-
arrays are manufactured as open slides and are handled
openly or in special hybridization chambers during the
entire chip processing.

s0055 Preparation of Target RNA

p0070 During surgical removal of malignant tumors, one of the
first steps is the interruption of the arterial blood supply.
From this moment on, the tumor tissue is exposed to
hypoxia at body temperature (Figure 7.3). The duration
between artery ligation and the final removal of the
tumor can vary considerably and is not subject to stan-
dardization under clinical conditions. Following tumor
resection, logistical constraints may lead to further con-
siderable delay before the tumor material is finally
shock-frozen at –80�C. Thus, this lengthy process might
lead to a considerable extent of target RNA degradation.

s0060 Laser Microdissection of Tumor Tissue

p0075 If the sample material is contaminated with nontumor
tissue (such as stromal cells and lymphocytes) or if
necrotic areas (with cellular debris) occur, data analysis
will be severely hampered. Therefore, researchers often

try to obtain homogeneous sample material. A conve-
nient (although potentially laborious) approach is
laser-assisted microdissection (Figure 7.4). Starting from
a complex tissue architecture, areas with carcinoma cells
only, stromal material, or any other area of interest, such
asmaterial located at the invasion front of the tumor, are
obtained. In the example shown, colorectal carcinoma
cells have been microdissected with the use of a laser
beam. For each sample, 5 mm tissue sections were micro-
dissected and RNA was extracted by a column-based pro-
cedure including DNAase digestion. Microdissection of
5 � 106 mm2 per specimen yields about 10–20 ng RNA
in about 2 hours of working time.

s0065RNA Quality Control, Labeling, and Target
Amplification

p0080Figure 7.5 shows an electropherogram reflecting RNA
quality according to the following criteria: (i) clear

Figure 7.3f0015 Preservation of tumor tissue during surgery.

Before micro-dissection

After micro-dissection

Figure 7.4 f0020Laser microdissection of tissue samples.
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and well-defined 18 S and 28 S peaks of ribosomal
RNA, (ii) low noise between the peaks, and (iii) no
or only minimal evidence for low molecular weight
material. For hybridization with the probe nucleic
acids on the microarray, a labeled target sample
nucleic acid is needed. RNA extracted from clinical
specimens is used for synthesis of labeled cDNA with-
out amplification of the sample RNA, or for produc-
tion of aRNA (Figure 7.6). The process of aRNA
synthesis allows high amplification of the sample mate-
rial, which is of relevance if only small amounts of
sample material are available, such as after laser micro-
dissection. Whether amplification changes the out-
come of the experiment by asymmetric amplification
of high-abundance and low-abundance genes is still a
matter of discussion. Common amplification proce-
dures utilize Bacteriophage T7, T3, or SP6 RNA poly-
merases to transcribe RNA from a DNA template
(Figure 7.7). The DNA template must have an appro-
priate polymerase binding site (called T7 in the
figure) in its sequence, upstream of the region to be
transcribed. A complex of this binding sequence �20
base pairs in length linked to an oligo-dT sequence is
incorporated into the cDNA by reverse transcription
of the sample RNA (first strand synthesis). The RNA
is then degraded by RNase-treatment, and the second
strand is fabricated by DNA-polymerase. The resulting
double-stranded cDNA serves as the template for the
T7-RNA-polymerase producing RNA in antisense direc-
tion (aRNA), compared to the orientation of the tem-
plate RNA. The entire procedure can be repeated
resulting in a 1,000-fold or higher amplification of
the RNA. By including labeled nucleotides (NTP) in
the in vitro transcription reaction, one can incorporate

labels into the synthesized RNA (using biotin-labeled
UTP to generate biotin-labeled RNA or any kind of
UTP-bound fluorescent dye to generate fluorescently
labeled RNA). Because signal intensity of red and
green fluorophores might not be identical, it is manda-
tory to invert or swap the fluorescent dyes used for
labeling. For instance, in the case of Cy3/Cy5 fluoro-
phores, the green signal intensity is often stronger
than the red one. To compensate for this, the labeling
reactions are exchanged between the two targets and
microarray hybridization is repeated.

s0070Microarray Hybridization: Two-Color
Experiment

p0085Hybridization of the target nucleic acid molecule to
the probe DNA on the chip is most commonly
detected and quantified by fluorescence. This requires
a target molecule labeled with a fluorophore such as
Cy3 or Cy5. The aim is to determine the relative abun-
dance of the target molecule within the sample solu-
tion. Spotting of the probe molecules to the surface
is a critical step. In order to account for spot-to-spot
variations due to differing amounts of probe mole-
cules in the spots, two-color experiments are used
and the ratio of the two fluorophores in any single
spot is determined (Figure 7.8). In a typical two-color
experiment, RNA is extracted from tumor tissue and
neighboring normal tissue. The RNA samples are
labeled with different fluorophores, for instance,
tumor RNA with a red fluorophore, normal RNA with
a green one. Both samples are hybridized together on
the microarray. If the spot then appears in red in the
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Figure 7.5f0025 RNA quality assessment.

B978-0-12-374419-7.00007-X, 00007

Coleman, 978-0-12-374419-7

Part II Concepts in Molecular Biology and Genetics

6



Comp. by: SKarthiProof0000868544 Date:29/9/08 Time:22:28:28 Stage:First Proof File Path://ppdys1108/
Womat3/Production/PRODENV/0000000038/0000010883/0000000005/0000868544.3D Proof by: QC by:

Figure 7.6f0030 Overview of RNA processing.

Figure 7.7f0035 RNA amplification (T7 in vitro labeling). Antisense RNA is generated using T7 polymerase. The microarray is
populated with sense oligonucleotides corresponding to the genes of interest.
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microarray scanner, this means higher expression
(upregulation) of the corresponding gene in tumor
tissue compared to normal tissue. If the spot looks
green, higher expression of that gene in normal tissue
compared to tumor tissue has been detected. If the
gene is equally expressed in tumor versus normal tis-
sue, the combination of the two fluorophores will pro-
duce a yellow color.

s0075 Image Analysis and Data Processing

p0090 Microarrays assess gene activities indirectly by measur-
ing the fluorescence intensities of labeled target cDNA
hybridized to cDNA or oligonucleotide probes on the
array. There are different detection methods based
on light emission (fluorescence), such as confocal
laser scanning used by the scanners produced by Affy-
metrix, Agilent, Axon, HP, or CCD Imaging (Axon,
Applied Precision). Other methods for detection of
gene expression on microarrays include electrochemi-
cally based detection (Motorola) or radiolabeling
(Molecular Devices, Hitachi). Most commonly, micro-
array scanners use laser light for excitation and match-
ing filters and photomultiplier tubes for detection.
During scanning, excitation light from the laser source
hits the spots on the microarray. Fluorescent probes
on the array emit Stokes-shifted light in response to
the excitation light, and the emission light is collected
by the photomultiplier tube. Scanning plays a pivotal
role in the DNA microarray processing workflow and
can profoundly affect the quality and reliability of
microarray data. Typical sources of error from a micro-
array scanner include (i) noise in the background
light, (ii) nonuniformity of the scan field, (iii) varia-
tions in laser brightness and detector gain, and (iv)

spectral cross-talk between dye channels. Scanning of
the hybridized microarray leads to an intensity picture
displaying bright and dark spots (left side). While high
resolution scanning (5 mm–10 mm) is the standard,
some scanners are capable of scanning with 2 or
3 mm resolution. Using image analysis programs, the
raw fluorescence intensity signals are transformed into
numerical values for gene expression. This can involve
several procedures to ensure the reliability of data. For
example, spots which show defects due to printing
errors, scratches, and the influence of dust particles
should be excluded. Additionally, spot intensities
might have to be corrected for any background fluo-
rescence due to nonspecific hybridization. Finally,
the obtained measures for gene expression can be ana-
lyzed with bioinformatic and statistical methods.

s0080MICROARRAYS: BIOINFORMATIC

ANALYSIS

p0095Finding meaningful structures and information in an
ocean of numerical values obtained in microarray
experiments is a formidable task and demands various
approaches of data processing and analysis. In fact,
microarray data analysis poses major challenges due to
the sheer enormous lots of data produced. Although
the type of data analysis naturally depends on the
research questions posed, common steps in the analysis
include (i) data preprocessing and normalization, (ii)
detection of genes with significant fold changes, (iii)
clustering and classification of expression profiles, and
(iv) functional profiling (Figure 7.9) [20]. These steps
are only partially separated. For example, the choice of
preprocessing and normalization procedures can have

Figure 7.8f0040 Two-color microarray experiment.

B978-0-12-374419-7.00007-X, 00007

Coleman, 978-0-12-374419-7

Part II Concepts in Molecular Biology and Genetics

8



Comp. by: SKarthiProof0000868544 Date:29/9/08 Time:22:28:32 Stage:First Proof File Path://ppdys1108/
Womat3/Production/PRODENV/0000000038/0000010883/0000000005/0000868544.3D Proof by: QC by:

considerable impact on the results of clustering and
classification. Also, the analysis methods to use might
depend on the choice of microarray technology. Here
we focus the data analysis for two-color spotted microar-
ray. Other microarray platforms might require different
bioinformatic approaches, especially for data-prepro-
cessing and normalization.

s0085 Preprocessing, Visualization, and
Normalization

s0090 Preprocessing

p0100 A first preprocessing step for two-channel microarray
data is commonly the logarithmic transformation of
signal ratios, which offers several advantages. First, fold
changes of the same order of magnitude become sym-
metrical around zero for upregulaton and downregula-
tion. For example, using log2 transformation, a
positive or negative fold change of two is displayed as
1 or –1, respectively. Second, the spot intensities are
usually more equally distributed along the scale, which
enables an easier detection of intensity bias or satura-
tion effects (Figure 7.10). Third, the variance of inten-
sities is more homogenous with respect to a log
intensity scale compared to a linear one. A homoge-
nous variance is often required for statistical tests.

s0095 Data Visualization

p0105 Plot representations are simple but very helpful tools to
detect artifacts or other trends in microarray data. The
most basic plots present the two channel intensities versus
each other on a linear or log scales (Figure 7.10A and
Figure 7.10B). More recently, MA-plots have become a
popular tool for displaying the logged intensity ratio (M)
versus the mean logged intensities (A). Although MA-
plots basically are only a 45o rotation with a subsequent
scaling, they reveal intensity-dependent patterns more
clearly than the original plot (Figure 7.10C) [21].

s0100 Normalization

p0110 Raw microarray data are often compromised by system-
atic errors, such as differences in detection efficiencies,
dye labeling, and fluorescence yields. Such signals are

corrected by normalization procedures [22]. Although
normalization is only an intermediate step in the analy-
sis, it considerably influences the final results. Depend-
ing on the experimental design and microarray
techniques applied, two main normalization schemes
are used: (i) between-slide normalization (to compare
signal intensities between different microarrays), and
(ii) within-slide normalization (for adjustment of sig-
nals of a single microarray). While between-slide nor-
malization is commonly used for one-color chip
technology, within-slide normalization is applied
mainly to two-color arrays for balancing both channels.
An approach referred to as simple global normalization
(a within-slide procedure) assumes that the majority of
assayed genes are not differentially expressed and that
the total amount of transcripts remains constant.
Therefore, the ratios can be linearly scaled to the same
constant median value in both channels. Alternatively,
a set of so-called housekeeping genes can be selected,
which are thought to be equally expressed in both sam-
ples. The median of these genes can then be taken to
adjust the intensity in both channels by a linear trans-
formation, so that the intensity medians of the
housekeeping genes are the same. If a dye bias is sus-
pected, the use of an intensity-dependent normaliza-
tion procedure might be justified. A widespread
method is to locally regress the logged signal ratios M
with respect to the logged intensities A and to subtract
the regressed ratios from the raw ratios. The derived
residuals of the regression provide the normalized fold
changes (Figure 7.10C). Additional normalization pro-
cedures are required, if measured spot intensity ratios
show a spatial bias across the array.

s0105Detection of Differential Gene Expression

p0115The standard task in microarray data analysis is the
detection of gene expression changes. In early micro-
array studies, a fixed threshold for fold changes (such
as two-fold) was arbitrarily defined to identify differen-
tially expressed genes. However, the setting of fixed
thresholds may yield a large number of false positives.
Since the measured intensity signals usually are noisy,
genes may show differential expression purely due to
random signal fluctuations. Particularly, signals related

Figure 7.9f0045 Principal steps of a microarray experiment [20].
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to weakly expressed genes are affected by high back-
ground noise and therefore require selection based
on a larger threshold than strongly expressed genes.
To distinguish more stringently noise from meaningful
changes in gene expression, statistical tests are nowa-
days commonly used. Such tests assess the statistical
significance of changes based on a set of assumptions
about the distribution of the random errors. These
errors are not correlated with any experimental vari-
able and unlike systematic errors cannot be corrected
by normalization. Random errors also set a limit of
detectable changes of gene expression in microarray
experiments. To estimate the random errors, experi-
mental replicates are essential. After the random error
is estimated, statistical significance can be assigned to
changes in gene expression in the framework of a sta-
tistical test. Replication of microarray analysis provides

also a valuable index of the overall quality of the exper-
iment. Ideally, the goal is a high degree of consistency
between different replicates. For subsequent visualiza-
tion of the results of statistical tests, so-called volcano
plots have become a popular mean. They offer the
advantage of displaying both significance and fold
changes observed (Figure 7.11).

p0120Statistical testing is based on the assessment of the
validity of explicitly formulated hypotheses. In general,
a null hypothesis H0 (for instance, that a gene is not
differentially expressed) and a contradictory alterna-
tive hypothesis Ha (for instance, that a gene is differen-
tially expressed) is set up. The alternative hypothesis is
supported if there is evidence against the null hypoth-
esis. The steps in hypothesis testing are as follows: (i)
setting up H0 and Ha, (ii) use of a test statistic to com-
pare the observed values with the values predicted by

Figure 7.10f0050 Plot representations for signal intensities of a two-color array comparing colorectal cancer cell lines derived from
primary carcinoma (labeled by Cy3) and from a metastasis (labeled by Cy5) [21]. The spot intensities in both fluorescence
channels are shown using linear (A) and log2-scale (B). The use of log2-scale reveals nonlinear behavior, reflecting a dye
bias toward Cy3 for low-intensity spots. The MA-plot presents this dye bias even more clearly and also a saturation effect
in the Cy5 channel for large intensities. (C) To correct the dye bias, one can perform a local regression (red line) of M (D).
The obtained residuals of the local regression, i.e., normalized logged fold changes, are well balanced around zero in MA-plot.
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H0, and (iii) definition of a region for the test statistic
for which H0 is rejected in favor of Ha. The level of sig-
nificance of a test is the probability that the test statis-
tic falls in the rejection region, if H0 is true. The
incorrect rejection of H0 is called a type I error (in
contrast to type II errors where H0 is not rejected
although it is false). The probability p that H0 is true
given the observed test statistic is called the p-value of
the test.

p0125 A variety of statistical tests have been proposed for
the identification of changes in gene expression. A
classical test for comparing the mean gene expression
values in two biological samples is the Student’s t-test.
Note that this test assumes the independence and nor-
mality of the expression values. The null hypothesis is
that the mean value of both samples is equal. Depend-
ing on the alternative hypothesis, two types of t-test
exist. For one-tailed t-tests, the alternative hypothesis
includes the sign of the differences, whereas for the
two-tailed test, positive and negative differences are
treated equally. Alternatively, permutation tests are
used that do not assume any particular data distribu-
tion. Permutation tests rely solely on the observed data
examples and can be applied with a variety of test sta-
tistics. The basic idea of a permutation test is simple.
Given labeled data, all permutations of the labels
should be equally likely. Evaluating a chosen test statis-
tic for all permutations, an empirical distribution of
the test statistic can be derived. The percentage of ran-
dom permutations that score higher than the actual

observed case gives the significance level. However, a
major restriction is that permutation tests can be com-
putationally very intensive.

p0130It is the nature of a microarray experiment that gen-
erally thousands of genes, if not the transcriptome as a
whole, are tested for differential expression. If multi-
ple tests are performed in parallel, the level of signifi-
cance for the whole set of tests does not equal the
level of significance for the single tests. For example,
the probability P of rejecting a true null hypothesis in
at least one of 1,000 simultaneous tests with a signifi-
cance level of 0.001 is 63%. Therefore, an adjustment
of the overall significance level and the p-values is nec-
essary. A popular approach to circumvent the prob-
lematic interpretation of p-values in multiple testing
is the calculation of the false discovery rate (FDR),
which is defined as the proportion of false positives
among significantly regulated genes. For instance, a
FDR of 0.2 indicates that 20% of significant genes are
likely to be false positives.

s0110Classification

p0135In its widest definition, classification is the assignment
of a set of objects to a set of classes. In microarray data
analysis, classification is commonly used to assign RNA
specimens to different classes, for instance, those that
distinguish types of tumors. Classification can be per-
formed in an unsupervised and supervised manner. If
class labels are not known in advance, the process is
called unsupervised. If class labels exist, the process
of classification is called supervised. However, note
that in the context of microarray data analysis, the
term classification usually refers to supervised classifica-
tion, whereas unsupervised classification is generally
referred to as clustering. The aim of supervised classifi-
cation methods is to correctly assign new examples
based on a set of examples of known classes. Thus, a
classifier should generalize from known class examples
to new unclassified examples. In microarray data anal-
ysis, the objects are provided as gene expression pro-
files and the classifiers have to identify decision
boundaries between classes based on these given pro-
files (Figure 7.12). To achieve this goal, classifiers are
optimized in a so-called (supervised) learning or train-
ing phase. After the optimization, the accuracy of the
classifier can be tested using new examples of known
class origin.

s0115Challenges

p0140Classification of tissue samples based on microarray
experiments faces several major challenges. First, micro-
array data can contain a high level of noise. Experimen-
tal procedures such as tissue handling, RNA extraction,
labeling, amplification, and hybridization can introduce
additional variability in the measured expression levels.
Furthermore, oligonucleotide and cDNA probes may
not be specific to one gene, and several different genes
may hybridize to the same probes (cross-hybridization).
Second, in the typical microarray experiment thousands

Figure 7.11f0055 The volcano plot is a graph that shows both fold
changes and statistical significance of recovered genes. The
graph displays negative log10–transformed p-values against
the log2-fold changes (M). Volcano plots can be used for the
selection of significant genes with a minimal required fold
change. Data taken from the experiment described in
Figure 7.10 [21]. Genes (displayed in blue and red) having
statistically significant differential expression (p < 0.01) lie
above a horizontal line. Genes (displayed in green and red)
with larger fold changes than 1.6 lie outside a pair of vertical
lines. Genes which fulfill both criteria are highlighted in red.
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of genes are monitored, while the number of RNA sam-
ples examined is usually restricted to hundreds or less.
It is well known that classifiers generally perform poorly
when the number of examples is small compared to the
number of genes used for classification. Third, tissue
samples are frequently heterogeneous in their compo-
sition. Thus, different cell types are represented in a
single tissue sample used for RNA extraction. This het-
erogeneity can cloud the separation of the classes of
interest, such as the distinction of cancer and normal
tissue.

s0120 Gene Selection

p0145 Generally, large numbers of genes without changes in
mRNA abundance introduce noise and may yield a
poor classification performance. Gene selection aims
at improving classification by excluding noninforma-
tive genes and thereby reducing the number of genes
for the classifier. Genes are excluded if they only
weakly contribute to the classification or not at all.
Gene selection can be incorporated in a classification
system in two different ways. First, gene selection and
classification can be treated separately from the classi-
fication model. Genes are selected with respect to pre-
defined criteria such as Pearson correlation or the
significance in the Student t-test. This approach often
has the advantage of being computationally inexpen-
sive and easy to process. However, the selected genes
are frequently highly correlated to each other and
are likely to be redundant. Alternatively, the selection

of genes is determined by the classification methods
themselves in an iterative manner. This constitutes an
integrated approach since an optimal set of features
depends on the choice of the classifier.

s0125Classification Methods

p0150Numerous methods for classification have been
applied to microarray data. One of the most basic
methods is the k-nearest neighbor method (with k
as a positive integer). The classification rule is sim-
ple: A new example is assigned to the class most com-
mon among its k nearest neighbors. The distances of
the examples are calculated based on their similarity
in the expression profiles. For instance, if k is 1, then
the example is simply assigned to the class of its near-
est neighbor. Other currently popular classifiers are
support vector machines based on statistical learning
theory and belonging to the class of kernel-based
methods. The basic concept of support vector
machines is the transformation of input vectors into
a highly dimensional feature space, where a linear
separation may be possible between the positive and
negative class members. In this feature space the sup-
port vector learning algorithm maximizes the margin
between positive and negative class members of the
training set in order to achieve a good generalization.

s0130Cross-Validation

p0155Biological samples included in microarray analysis
generally constitute only a small fraction of a larger
sample cohort of interest. However, if a classifier is
optimized based on a small number of examples, it
will frequently show decreased performance on new
data, a phenomenon usually called overfitting. An
approach to prevent overfitting is k-fold cross-valida-
tion. It splits the data into k segments of which k –
1 segments are used for the training and one seg-
ment for the testing of the classifier. This is repeated
k times, so that every segment is used for testing. The
classification error in the validation procedure is
then the sum over the error in the k tests. This
approach has the advantage that a large part of the
data can be retained for the training of the classifier,
while the validation error is evaluated using all data
examples equally. In the extreme case that k equals
the number of data objects, the cross-validation is
also referred to as the leave-one-out or jackknife
method. If different models are compared by cross-
validation, the model yielding the lowest validation
error is generally selected.

s0135Visualization

p0160Data visualization is also an important component in
the assessment of class distributions. It provides a global
picture of the separation of samples and helps to iden-
tify potential outliers. However, a major challenge is
the accurate representation of high-dimensional micro-
array data, where samples are defined by the expression
values of thousands of genes. In contrast, data plots

Figure 7.12f0060 Extrapolation in classification: A classifier is
trained on the sample from classes 1 and 2 based on the
expression values of the two genes X and Y. The dashed
line represents the border line derived by the classifier
between the classes. Thus, new examples (represented by
the dashed line) will be classified according to their gene
expression values for X and Y. Thus, example A will be
assigned to class 1, whereas example B will be assigned
to class 2. The classification of C remains problematic,
since it is located close to the border line and different to
previously seen examples. Further tests would be
advisable in this case.
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are restricted to two or three dimensions. A standard
method for representing high-dimensional microarray
data is based on principal component analysis (PCA).
The goal of this method is to find an optimal linear pro-
jection to a lower dimensional space. Practically, PCA
leads a projection from the original gene expression
values to an orthogonal basis of principal components.
The principal components give the directions of the
maximal variance in the data (Figure 7.13).

s0140 Cluster Analysis

p0165 Clustering, or unsupervised classification, has been
studied for many decades in pattern recognition and
related fields. Clustering methods generally aim at
identifying subsets (clusters) in data sets based on the
similarity between single objects. Similar objects are
assigned to the same cluster, while dissimilar objects
are assigned to different clusters. Cluster analysis,
which can be understood as exploratory data analysis,
is applied to search for patterns that may reveal
relationships between individual examples. Frequently,
the data structures detected by cluster analysis can give
first insights into the underlying data-producing
mechanisms. It is especially useful if prior knowledge
is little or nonexistent since it requires minimal prior
assumptions. This feature has made clustering a widely
applied tool in microarray data analysis. One of the
main purposes of clustering is to infer the function
of novel genes by grouping them with genes of well-
known functionality. This method is based on the
observation that genes with similar expression patterns
(co-expressed genes) are often functionally related

and are controlled by the same regulatory mechanisms
(co-regulated genes). Therefore, expression clusters
are frequently enriched by genes of certain related
functions. If a novel gene of unknown function falls
into such a cluster associated with a certain biological
function, it seems likely that this gene also plays a role
in the same process. This guilt-by-association principle
enables assigning possible functions to a large number
of genes by clustering of co-expressed genes [23].

p0170Clustering methods can be divided into hierarchical
and partitional clustering. Hierarchical clustering cre-
ates a set of nested partitions, so that partitions on a
higher hierarchical level comprise partitions on lower
levels. The sequential partitioning is conventionally
presented as a dendrogram. A dendrogram displays
the clusters in a tree structure. The length of the
branches represents the similarity between clusters.
The shorter the branches, the more similar the clus-
ters are. Usually, hierarchical clustering is performed
in a stepwise agglomerative manner, starting with the
single objects as singular clusters and gradually merg-
ing the clusters until all objects belong to a single clus-
ter. To decide which clusters to merge, one calculates
their similarity at every step of the clustering proce-
dure. Clusters which show the largest similarity are sub-
sequently joined. In microarray data analysis, both
genes analyzed and biological samples can be hier-
archically clustered. If these tasks are performed simul-
taneously, the procedure is also referred to as two-way
clustering. Examples of such two-way clustering are
shown in Figure 7.18 and Figure 7.20. As an alternative
approach, partitional clustering splits the data in sev-
eral separate clusters without the definition of a cluster
hierarchy. It is commonly used to detect temporal
gene expression patterns in time series experiments.
The most popular methods for partitional clustering is
k-means clustering. It starts with k randomly initiated
cluster centers and splits the data in k partitions with a
given integer k abased on the distance to the nearest
cluster center. By repeated recalculation of the cluster
centers and partitioning of the objects, this method
aims to iteratively minimize the within-cluster variation.

p0175Before a cluster analysis is performed, it is important
to standardize the expression values, as co-expressed
genes frequently show similar changes in expression
but may differ in the overall expression rate. Therefore,
the expression values of genes are usually adjusted to
have a mean value of zero and a standard deviation of
one. This ensures that genes with similar changes in
expression have similar standardized expression values
and thus will tend to cluster together.

p0180A crucial question is how many clusters can be
retrieved from microarray data. This is generally diffi-
cult to answer for gene expression data as the detected
clusters frequently are inhomogeneous and may show
substructures, which can be interpreted as clusters
themselves. While hierarchical clustering is able to
indicate the different levels of clustering in the result-
ing dendrogram, partitional clustering algorithms lack
the ability to indicate substructures in clusters. It is also
important to note that common clustering methods
always produce clusters due to the underlying

Figure 7.13f0065 Principal component analysis of leukemia
samples based on 100 genes that have the largest squared
Pearson correlation with the two classes of leukemia, ALL
and AML [36]. The first two principal components include
63.3% of the total variance of the data. Most ALL and AML
samples can be separated based on the first two principal
components. However, note that the AML outlier makes a
perfect separation difficult [21].
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algorithms. For one to critically assess reliability of the
clusters that result from this analysis, several measures
for cluster validity have been introduced. Many of
them assess the quality of clusters based on criteria
such as compactness and isolation. Alternatively, clus-
ters that emerge from a given analysis can be exam-
ined based on their robustness relative to the noise
in the data set. For this approach, one would artificially
add noise to the data before clustering and compare
the newly identified clusters with the original ones.
Clusters that remain the same despite added noise
are likely to be more reliable than clusters which van-
ish in the presence of noise.

s0145 Functional Profiling and Other Enrichment
Analyses

p0185 Frequently, large numbers of differentially expressed
genes are detected in microarray experiments, making
the overall interpretation of the results difficult. If fur-
ther research is not focused on a few candidate genes,
a helpful tool for understanding the complexity of the
data set is functional profiling. This approach aims at
identifying biologically informative classes of genes
that are likely to be affected in the experiment. The
underlying framework is given by Gene Ontology
(GO), a popular database providing gene annotations
in a systematic manner for various species [24]. In
GO, genes are assigned to a defined set of categories
describing molecular functions, biological processes,
and cellular compartments. The categories themselves
are placed in a tree-like structure with parent-child
relationships. Categories at low levels are fairly general
(for instance, those related to cell death) in contrast to

more specific categories at higher levels (such as those
that function in the regulation of caspases). Since GO
is computer-accessible, the assignment of annotations
to a list of genes has become much easier and rapid.
After automatic gene annotation, functional profiling
is performed by determining which GO category is
represented more frequently than expected in the list
of differentially expressed genes. Collecting involved
GO categories provides a more holistic picture than
the inspection of individual genes. Nowadays, numer-
ous software tools are available for functional profiling
of microarray experiments. Besides the list of differen-
tially expressed genes, the list of genes represented on
the microarray is a necessary prerequisite for the anal-
ysis. Comparing the functional composition of both
lists, one can calculate the statistical significance for
enrichment of differentially expressed genes in a
biological process. The user typically obtains a list of
significantly enriched GO categories associated with a
particular experimental condition or disease state.
However, there are important caveats with respect to
using GO. Results can vary considerably when using
different software tools. In addition, while there is a
considerable number of manually curated gene anno-
tations in GO, the majority of human genes have been
annotated solely by computational means [25].

p0190The concept of functional profiling to examine
enrichment of genes belonging to defined functional
categories can be applied in a general way. Another
example of enrichment analysis is the examination of
the chromosomal location of differentially expressed
genes. This strategy yields a first indication for poten-
tial underlying changes in the chromosomal structure,
such as copy number alterations or deletions, integrat-
ing transcriptomics and genomics (Figure 7.14).

Figure 7.14f0070 Chromosomal localization of genes exhibiting differential expression. The statistical significance for local
enrichment of upregulated genes in a metastatic colorectal cancer cell line compared to a primary carcinoma line (SW480)
is shown. To detect possible changes in the chromosomal structure of the two related cell lines, researchers differentially
expressed genes to their corresponding chromosomal locus. Subsequent enrichment analysis using a sliding window
technique indicated several potential chromosomal alterations.
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s0150 Microarray Databases

p0195 Microarray experiments produce massive quantities of
gene expression data. Therefore, it has become good
practice to deposit generated microarray data in pub-
licly accessible databases. This practice is typically
requested by journal editors prior to publication of the
data. This allows independent researchers not only to
scrutinize data obtained by others for their own inter-
ests, but also to validate the original analyses. In fact,
the practice of sharing microarray data has allowed the
community of bioinformaticians and statisticians to
develop new methods and compare them with existing
ones based on publicly accessible data sets. Such com-
parisons have been extremely valuable, since results
from microarray experiments rely not only on the raw
data, but to a substantial part on the applied computa-
tionalmethods. However, the interpretation ofmicroar-
ray experiments requires a common forum providing
various types of information on the examined samples
and experimental conditions, arrayed genes, microar-
ray platforms, and applied computational approaches.
Therefore, standards for publishing microarray data
have been established. The most important one is the
Minimum Information About a Microarray Experiment
(MIAME) standard [26]. This standard requires deposi-
tion of raw microarray data, normalized data, sample
annotation, experimental design, description of the
microarray, and experimental conditions. Additionally,
the development of large central microarray databases
has facilitated data sharing. One of the first repositories
was the Stanford Microarray Database (http://genome-
www5.stanford.edu/), including a large collection of
two-color array experiments. Currently, the two major
public microarray databases are Gene Expression
Omnibus provided by the National Center for Biotech-
nology Information (http://www.ncbi.nlm.nih.gov/
geo/) and Array Express (http://www.ebi.ac.uk/micro
array-as/ae/) provided by the European Bioinformatics
Institute. Both databases follow the MIAME standard
and provide several options to users for depositing their
own microarray data and for accessing information
from others.

s0155 MICROARRAYS: APPLICATIONS IN BASIC

RESEARCH AND TRANSLATIONAL

MEDICINE

s0160 An Early Example for Microarray-Based Gene
Expression Profiling Aimed at Understanding
Metabolism

p0200 Ten years ago, microarray analysis was still in its infancy.
Most bioinformatic tools available today had not been
developed. Here we present one of the early applica-
tions of microarray technology published in 1997 by
Pat Brown’s group at Stanford University [27] as a para-
digmatic example. The Brown group used a microarray
representing 6,600 yeast genes to study a process known
as diauxic shift. In glucose-rich medium, yeast cells gen-
erate energy by fermentation and convert the substrate

glucose to acetaldehyde, which is then reduced to etha-
nol by alcohol dehydrogenase. When glucose is con-
sumed, cells switch from fermentation to respiration
and utilize the produced ethanol as a carbon source
to generate glycogen. To study gene activity during this
process, this group labeled cDNA obtained from cells
before reaching exponential growth phase with the
red fluorescent dye Cy3 as a reference. RNA was
prepared at several time points during growth phase
and substrate shift, reverse transcribed into cDNA, and
labeled with the green fluorescent dye Cy5. Then the
Cy5-labeled cDNA (RNA) targets and the Cy3-labeled
reference were hybridized to the arrays, and the relative
intensities of Cy3 versus Cy5 were measured for each
time point. With increasing yeast cell growth indicated
by enhancement of the optical density of the cultures,
the number of differentially expressed genes increased,
as did the level of differential expression indicated by
the intensity of red and green staining (Figure 7.15).
While in sparse culture, only 0.3% of the genes were
altered and the maximal difference in expression was
2.7-fold, 30% of the genes were altered at the final time
point of the experiment. More than 300 genes exhib-
ited a differential expression of more than 4-fold. This
experiment confirmed that alterations of expression
can be efficiently determined in a time-resolved manner
by microarray analysis. It also suggested that besides the
genes, whose biochemical function was well known
already, a number of genes that had not been character-
ized, approximately 400 at the time of the analysis,
could potentially play a role in the diauxic shift, growth
control, and energy generation. In summary, these can-
didate genes were placed into a potential functional
framework. This became one of the major goals of
microarray experiments in subsequent microarray stud-
ies, not only in yeast but also in mammalian systems
including human cells and tissues.

p0205In the yeast microarray experiment, the Stanford
researchers went one step further and asked the ques-
tion, if co-expressed genes are regulated in a similar
fashion. Several distinct gene clusters comprising ele-
ments that exhibit the same expression pattern of
upregulation or downregulation over time were identi-
fied. When the gene promoters of the co-expressed
genes were analyzed, common regulatory sequences
were recovered. For example, all but one gene (IDp2)
contained a regulatory element named CSRE—carbon
source responsive element (Figure 7.16). The CSRE is
required to activate transcription of the genes involved
in gluconeogenesis and the glyoxylate cycle in yeast.
And indeed, all of the genes found in this cluster play
a role in the glyoxylate cycle (MLS1, IDP2, ICL1), in
the conversion of acetate to acetyl-CoA (ACR1), and
in the production of fructose-6-phosphate (FBP1). In
summary, the basic conclusions from the yeast experi-
ment were (i) similar function is associated with co-
regulation, (ii) co-regulation provides a way to define
novel functional modules, (iii) co-regulation provides
a way to define potential functions for unknown genes,
(iv) co-regulation is based on similar transcriptional
regulatory factors, and (v) co-regulation is a basis for
the identification of regulatory mechanisms.
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s0165 Elucidating the Transcriptional Basis of the
Serum Response in Human Cells

p0210 Diploid human fibroblasts, like most other cell cul-
tures, require the presence of serum growth factors
in their culture medium. Routinely, these factors are
supplied by adding fetal calf serum to the culture
medium. Cultured cells can be made quiescent by

serum deprivation. When fetal calf serum is added to
such cells, they quickly resume cell cycle progression
and proliferation. This cellular reaction is called the
serum response, which was chosen as another early
example to demonstrate the power of microarray anal-
ysis [28]. This time the Stanford researchers obtained
RNA from serum-starved cultures and prepared target
cDNA labeled with Cy3. RNA from all other time

Figure 7.15f0075 Gene expression changes associated with increased culture density over time [27]. In each of the arrays used to
analyze gene expression during the diauxic shift, red spots represent genes that were induced relative to the initial time point,
and green spots represent genes that were repressed. Note that distinct sets of genes are induced and repressed in the
different experiments. Cell density as measured by optical density (OD) at 600 nm was used to monitor the growth of the
culture.
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points following serum stimulation was used to pre-
pare Cy5-labeled targets. In two-color microarray
experiments, the targets were hybridized to a human
cDNA array representing 8,600 human sequences.
About 4,000 of them were known human genes,
2,000 sequences were related to these annotated
genes, while the remaining genes were ESTs without
known function. Figure 7.17 shows a subset of genes
(n ¼ 517) whose expression changed up to 8-fold dur-
ing serum stimulation.

p0215 The transcriptional response toward serum stimula-
tion is very rapid; the earliest changes can be observed
as early as after 15 minutes. The genes can be divided
into several clusters, which exhibit a common regu-
latory scheme. Some clusters show a characteristic pat-
tern of upregulation followed by downregulation
(cluster C) or the reverse pattern (clusters E and B).
Based on current knowledge in molecular cell biology
and data mining for gene functions, the Stanford
researchers performed a functional gene clustering.
This analysis was done at a time before the Gene
Ontology became available. One functional cluster of
co-regulated genes included transcription factors
including the ones known to be involved in the imme-
diate early gene response, permitting rapid responses
without the need for protein synthesis. Another cluster
included phosphatases. Their functional relevance was
not known at the time of the analysis. Today it is well
established that the phosphatases limit signaling
kinase activity, which is rapidly stimulated upon growth
stimulation, by negative feedback. Not surprisingly, the
researchers recovered genes encoding cell cycle regu-
latory proteins. Inhibitory genes were quickly downre-
gulated, paving the way for re-entry of the serum-
starved cells into the cell cycle. With a short delay, cell
cycle stimulatory genes were upregulated, among them
cyclin D1 and DNA topoisomerase, which is required
for chromosome segregation at mitosis. A more

surprising feature of the analysis was the appearance
of genes with known functions in wound healing. This
referred not only to genes whose products function
intracellularly, but also to genes whose products play
a role in remodeling clot structure and the extracellu-
lar matrix, as well as in intercellular signaling. While
previous studies had aimed at elucidating intracellular
events in wound healing, gene expression profiling of
the serum response indicated the relevance of extra-
cellular events during the first 24 hours in this process.

s0170Microarray Applications in Cancer
Pathogenesis and Diagnosis

p0220A recent PubMed search revealed that the majority of
microarray and gene expression profiling studies in
medicine are devoted to some aspect of cancer. Cancer
studies far outnumber similar studies in cardiovascular
diseases, neurodegenerative diseases, infection, inflam-
mation, and other diseases (Table 7.1). Therefore, we
have chosen some prominent applications of microar-
rays in the field of cancer as paradigms to demonstrate
the power of transcriptome analysis.

p0225The current themes of transcriptomics in cancer
analysis are related to the mechanisms of pathogenesis,
cancer classification, and outcome prediction. To Au1eluci-
date the mechanisms of tumorigenesis and metastasis,
particularly to study the complexity of the underlying
processes, researchers frequently use microarrays. Can-
cer classification based on microarray studies aims at
identifying characteristics beyond anatomical site and
histopathology. Outcome prediction tries to overcome
the limitations of current diagnostic procedures by
establishing gene-based criteria to indicate and predict
tumor prognosis and therapy response, even for indi-
vidual cancer patients. Basically, there are three types
of microarray-based approaches: (i) class comparison,

Figure 7.16f0080 Analysis of regulatory modules within the promoters of co-regulated genes associated with the diauxic shift [27].
(A) A group of genes exhibited an CSRE (carbon source element) within their promoter regions. (B) The growth curve, shown
as increasing optical density (black line) and decreasing glucose level (red line), allows determination of a glucose threshold
for the onset of gene expression due to the CSRE.
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Figure 7.17f0085 Hierarchical clustering of genes induced or repressed during serum response in human fibroblasts [28]. Ten
gene clusters (A–J) harboring 517 genes, which show significant alterations in gene expression over time, are depicted. For
each gene, the ratio of mRNA levels in fibroblasts at the indicated time intervals after serum stimulation compared to their
level in the serum-deprived (time zero) fibroblasts is represented by a color code, according to the scale for fold-induction
and fold-repression shown at the bottom. The diagram at the right of each cluster depicts the overall tendency of the gene
expression pattern within this cluster. The term unsync denotes exponentially growing cells.
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(ii) class discovery, and (iii) class prediction. Using class
comparison, one tries to compare the expression pro-
files of two (or more) predefined classes. For example,
two tissue samples, normal versus malignant cells or tis-
sues, different developmental stages, or cells treated with
drugs under different conditions. Using class discovery,
one tries to identify novel subtypes within an apparently
homogenous population. In this case, microarray analy-
sis is used to identify features that cannot be distin-
guished by other available tools. The starting point
usually is a homogenous group of specimens, in which a
concealed proportion behaves aberrantly or exhibits
invisible or unknown features. The problem of cancer
treatment falls into this category, since patients who are
stratified into treatment groups according to standard
histopathological criteria often respond differently to
therapy. We will see that microarray studies can help to
successfully address this urgent clinical problem. Class
prediction means to find a set of features that are predic-
tive for a certain, predefined class. This is perhaps the
most sophisticated type of microarray application. It is
usually based on class discovery, but now the characteriza-
tion of a novel class is intended. Rather, the idea is to
establish a classifier. A classifier is a set of features, like
genes, proteins, micro-RNAs that are surrogate markers
for a certain class. This is the common approach to iden-
tify predictive gene sets or gene signatures that can pre-
dict clinical outcome or therapy response.

s0175 Identification of Hidden Subtypes Within
Apparently Homogenous Cancers

p0230 The group of T. Sorlie identified 456 genes out of
8,000 genes on a microarray that discriminated
between tumor subclasses in a cohort of 65 tumors
from 42 breast cancer patients [29]. Gene expression
patterns of breast carcinomas helped to distinguish

tumor subclasses with clinical implications. Using hier-
archical clustering, the Sorlie group distinguished five
distinct tumor groups characterized by their gene
expression pattern: the basal epithelial cancer type,
the luminal epithelial cancer types A–C, a group dis-
playing expression of the breast cancer oncogene
ERBB2 (HER2), and a group without any known fea-
ture. There was yet another group showing features
of normal breast epithelial cells (Figure 7.18). In the
next step of the analysis, the researchers addressed
the question as to whether these different groups are
characterized by distinct clinical parameters. There-
fore, they compared the groups by certain statistical
methods, among others by univariate statistical analy-
sis, for either overall survival or relapse-free survival
monitored for up to 4 years (Figure 7.19). The patient
groups that were ERBB2-positive or were characterized
as basal epithelial breast tumors had the shortest sur-
vival times. While this information was not new for
the ERBB2-positive tumors, the basal epithelial breast
cancers belong to a novel group with an obviously
bad prognosis. One characteristic of this tumor type
is the high frequency of TP53 mutations. The tumor
suppressor gene TP53, well known as the guardian of
the genome, is lost or mutated in more than 50% of
all advanced human cancers, and might be responsible
for the bad prognosis. There was also a difference in
clinical outcome between the luminal-type breast can-
cers. Most strikingly, luminal A tumors exhibited a very
good performance at least within 4 years, while lumi-
nal B or luminal C tumors were intermediate. In con-
clusion, this study opened the door to further screen
many tumors for gene signatures indicative of the clin-
ical performance of breast cancer patients. With
respect to cancer treatment, the most important issue
is to find gene sets predictive for the susceptibility or
resistance to therapy, particularly to chemotherapy,
and to clinical outcome in the absence of other

Table 7.1t0005 Number of Published Microarray and Gene Expression Profiling Applications in
Research. Results of a PubMed Search Dated July 13, 2008, Using Single Keywords and
Combinations of Two Keywords Without Limits to Publication Years.

2nd Keyword

1st keyword None Gene Expression Profiling Microarray

None - 35,712 25,841
Pharmacology 4,244,442 8,358 5,668
Diseases 3,520,603 8,169 5,904
Cancer 2,172,278 11,513 8,657
Pathology 1,813,867 7,790 5,708
Cardiovascular diseases 1,460,061 1,149 616
Development 1,266,779 8,529 5,491
Immunology 1,094,163 3,021 2,078
Infection 892,647 1,665 1,254
Nutrition 404,775 528 371
Drug development 281,029 1,798 1,206
Inflammation 280,552 1,318 1,001
Neurodegenerative diseases 152,735 457 277
Toxicology 82,952 649 460
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conventional indicators. So far, questions related to
chemotherapy resistance and drug sensitivity have also
been addressed by microarray studies, but have not
been advanced to the clinical level.

s0180 Gene Expression Profiling Can Predict
Clinical Outcome of Breast Cancer

p0235 Breast cancer patients with the same stage of disease
exhibit markedly different treatment responses and
overall outcome. However, histopathological assessment

of these cancers does not have sufficient power to dis-
criminate which patients will perform well versus those
that will not. The strongest predictors for metastases
(such as lymph node status and histological grade) fail
to classify accurately breast tumors according to their
clinical behavior. None of the signatures of breast can-
cer gene expression reported to date allow for patient-
tailored therapy strategies. The study published by van’t
Veer et al. [30] in the Netherlands has pioneered gene
array-based breast cancer diagnostics. The study was
based on a well-characterized cohort of breast cancer
patients (n ¼ 117). This included 78 sporadic primary

genes group C

genes group D

genes group E

genes group F

genes group G

A

B

Figure 7.18f0090 Differential breast cancer gene expression [29]. Gene expression patterns of 85 experimental samples (78
carcinomas, 3 benign tumors, 4 normal tissues) analyzed by hierarchical clustering using a set of 476 cDNA clones. (A)
Tumor specimens were divided into 6 subtypes based on their differences in gene expression: luminal subtype A, dark
blue; luminal subtype B, yellow; luminal subtype C, light blue; normal breast-like, green; basal-like, red; and ERBB2þ, pink.
(B) The full cluster diagram obtained after two-dimensional clustering of tumors and genes. The colored bars on the right
represent the characteristic gene groups named C to G and are shown enlarged in the right part of the graph: (C) ERBB2
amplification cluster, (D) novel unknown cluster, (E) basal epithelial cell-enriched cluster, (F) normal breast epithelial-like
cluster, (G) luminal epithelial gene cluster containing ER.
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invasive ductal and lobular breast carcinomas of less
than 5 cm in size. The tumor stages were T1 or T2,
nodal status N0 (without axilliary metastases), patient
age <55 years at diagnosis without a history of previous
malignancies. The patients received surgical treatment
followed by radiotherapy, but no adjuvant chemother-
apy (except for 5 patients). The follow-up period of
the patient cohort was 5 years. Tissue samples contained
more than 50% tumor cells by pathological inspection;
estrogen receptor (ER) and progesterone receptor
(PR) status were known. The cohort was supplemented
by 20 hereditary tumors carrying BRCA1/BRCA2 muta-
tions that were of similar histology to the sporadic can-
cers. Target RNA/cDNA was labeled and hybridized to
an oligonucleotide array representing more than
24,000 human sequences and more than 1,000 control
sequences. The reference target used in this system
was a pooled cRNA derived from an RNA mixture of
all patients. This means that gene expression of each
sample was determined relative to the pool of all sam-
ples. The hybridizations were performed in duplicate
and �5,000 genes appeared significantly regulated
more than 2-fold with a p-value of less than 0.01.

p0240 In the first step of bioinformatic analysis, expression
profiles of 98 cancer samples analyzed were clustered
hierarchically according to similarities among the

5,000 genes (Figure 7.20A and Figure 7.20B). This
revealed two distinct groups of tumors. In the upper
group, 34% had developed distant metastasis within
5 years, while in the lower group 70% exhibited meta-
static spread. There was also a clear association with ER
expression, which when lacking indicates a bad prog-
nosis. Therefore, they filtered out ER-negative tumors
that did not express ER and also some of the known
ER targets (Figure 7.20C). In addition, the second
group of tumors expressed a B-cell and T-cell gene sig-
nature. The tumors were thus characterized by a lym-
phocyte infiltration and clearly separated from the
ER-negative group (Figure 7.20D).

p0245In a supervised classification procedure, the resear-
chers from the Netherlands used the gene expression
profiles obtained from the sporadic tumors only. In
the first step of the classification procedure, the
�5,000 genes that were significantly regulated in more
than 3 of 78 tumors were selected from the 25,000
genes represented on the array. The correlation of
each gene expression profile with the clinical outcome
of patients was calculated, and 231 genes were found
to be significantly associated with disease progression.
In the second step, the 231 informative genes were
rank-ordered according to their correlation coeffi-
cient. In the third step, the number of genes in this
preliminary prognosis classifier was optimized by
cross-validation, particularly by the leave-one-out pro-
cedure. The final result was a signature of 70 genes,
which predict the clinical outcome—distant metastasis
within 5 years—with an accuracy of 83% (Figure 7.21).
This means that of 78 patients, 65 were assigned to the
right category, poor prognosis (Figure 7.21, cluster
below the yellow line) or good prognosis (above). Five
patients with poor prognosis and 8 patients with good
prognosis were misclassified. van’t Veer et al. used an
independent set of 19 lymph-node negative breast
tumors (Figure 7.21C) to validate their classifier. This
time, 2 of 19 patients were assigned to the wrong
group. Thus, the classifier predictive of a short interval
to distant metastases (poor prognosis signature) in
patients without tumor cells in local lymph nodes at
diagnosis (lymph node negative patients) showed a
similar performance on this test set of tumors as com-
pared to the training set.

p0250Today, three gene expression-based prognostic breast
cancer tests have been licensed for use. These are Mam-
maPrint (Agendia BV, Amsterdam, the Netherlands;
based on the work described above), Oncotype DX
(Genomic Health, Redwood City, California), and H/I
(AvariaDX, Carlsbad, California). However, a recent
comparative study showed that for all tests offered, the
relationship of predicted to observed risk in different
patient populations and their incremental contribution
over conventional predictors, optimal implementation,
and relevance to patients receiving current therapies
need further study [31]. A particular caveat on the cur-
rently available predictors was also provided in a paper
published in 2005 [32]. The authors re-evaluated data
from 8 different microarray-based studies with more
than 800 tumor samples. The results suggested that the
list of genes identified as predictors was highly unstable

Figure 7.19f0095 Survival analysis (Kaplan-Meier plot) of patient
groups distinguished according to gene expression profiling
[29]. The Y-axis shows the survival probability for each
individual group; the X-axis represents the time scale
according to patient follow-up data. All groups identified by
gene expression profiling are shown. Luminal type A, dark
blue; luminal type B, yellow; luminal type C, light blue;
normal type, green; ErbB2-like type, pink; and basal type,
red. Patients with ErbB2-like or basal type tumors had the
shortest survival times; luminal-type A patients had the
prognosis. All others showed an intermediate probability
and were not clearly distinguishable.
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Figure 7.20f0100 Microarray-based prediction of breast cancer prognosis [30]. Two-dimensional clustering of 98 tumor samples
based on approx. 5,000 significantly regulated genes. (A) Clustering, (B) molecular characteristics of tumors, BRCA1
mutation and estrogen receptor status (ER), grade, lymphocyte infiltration, blood vessel count, and distant metastases
occurring within 5 years following diagnosis. The group above the yellow line is defined as the good prognosis group (34%
of patients developed distant metastasis), the group below as the bad prognosis group (70%). (C) Expression pattern of
subgroup associated with estrogen receptor expression, (D) subgroup exhibiting lymphocytic infiltration.

B978-0-12-374419-7.00007-X, 00007

Coleman, 978-0-12-374419-7

22

Part II Concepts in Molecular Biology and Genetics



Comp. by: SKarthiProof0000868544 Date:29/9/08 Time:22:29:07 Stage:First Proof File Path://ppdys1108/
Womat3/Production/PRODENV/0000000038/0000010883/0000000005/0000868544.3D Proof by: QC by:

70 genes

70 genes

A

B

C

Figure 7.21f0105 Identification of the prognostic breast cancer gene set using a supervised approach [30]. The 231 genes
identified as being most significantly correlated to disease outcome were used to recluster, as described in the text. Each
row represents a tumor and each column a gene. The genes are ordered according to their correlation coefficient with
the two prognostic groups. The tumors are ordered according to their correlation to the average profile of the good
prognosis group. The solid line marks the prognostic classifier showing optimal accuracy; the dashed line, the classifier
showing optimized sensitivity. Patients above the dashed line have a good prognosis signature, while patients below the
dashed line have a poor prognosis signature. The metastasis status for each patient is shown at the right. White bars
indicate patients who developed distant metastases within 5 years after the primary diagnosis; black indicates disease-
free patients.
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and that the molecular signatures strongly depended on
the selection of patients in the training set. Notably, 5 of
7 studies re-evaluated did not classify patients better
than chance.

s0185 From Gene Expression Signatures to Simple
Gene Predictors

p0255 In 1999, a group of scientists from highly ranked med-
ical schools in the United States assembled a
specialized microarray representing genes preferen-
tially expressed in lymphoid cells. The so-called lym-
pho-chip harbored more than 17,000 cDNA probes
derived from libraries specific for germinal center B-
cells, diffuse large B-cell lymphoma (DLBCL), follicu-
lar lymphoma, mantle cell lymphoma, chronic lym-
phatic leukemia (CLL), genes induced or repressed
in T-cell or B-cell activation, supplemented by lympho-
cyte-specific genes and cancer genes [33]. The consor-
tium interrogated these chips using targets prepared
from normal cells and tumors to define signatures
for the different immune cell types, under different
conditions and developmental stages. Particularly, the
researchers analyzed the most prevalent adult lympho-
mas using the lympho-chip. They identified signatures
for distinct types of diffuse large B-cell lymphoma
(DLBCL) exhibiting a bad prognosis, follicular lym-
phoma (FL) exhibiting a low proliferation rate, and
for chronic lymphatic leukemia (CLL) with slow pro-
gression (> 20 years). In addition, profiles were
obtained from normal lymphocytes (tonsil, lymph
node) as well as from several lymphoma and leukemia
cell lines. Clustering analysis placed the CLL and FL
profiles close to those of resting B-cells, while genes
of the so-called proliferation signature were weakly
expressed in these tumors. DLBCL, the highly prolif-
erative, more aggressive disease, had higher expression
levels of proliferation-associated genes. An additional
signature characterized germinal center B-cells, which
was clearly different from the resting blood B-cells
and from the in vitro activated B-cells. This indicated
that that germinal center B-cells represent a distinct
stage of B-cells and do not simply resemble activated
B-cells located in the lymph node.

p0260 When the scientists reclustered all DLBCL cases,
particularly considering the genes that define the ger-
minal center B-cells, they could clearly separate two
different subclasses of DLBCL. One of them strictly
showed the signature of the germinal center B-cells,
while the other one was clearly distinct. These data
suggested that a certain class of DLBCL was derived
from germinal center B-cells and retained its differen-
tiation signature even after malignant transformation.
By investigating the genes exclusively expressed in
either of the DLBCL types and reclustering, the
authors defined two signatures representative of either
the germinal center-type (GC-like) and what they
called the activated-type DLBCL (Figure 7.22). Analysis
of the clinical follow-up showed that the GC-like
tumors have a much better prognosis than the acti-
vated type of DLBCL (Figure 7.23). Did the result of

the microarray study provide novel information up to
this stage of investigation? When the authors com-
pared the microarray-based classification to the stan-
dard classifiers that define high and low clinical risk,
there was obviously no significant classification prog-
ress (Figure 7.23B). However, when the low-risk
patients initially classified conventionally are further
stratified by subgrouping them into the GC and
activated-type DLBCL types, the molecular classifier
was superior. Subsequent functional classification of
genes associated with activated-type DLBCL revealed
an NFkB pathway signature that comprises several anti-
apoptotic genes. The functional studies culminated in
the finding that inhibition of that pathway affected
growth of activated-type DLBCL, while CG-DLBCL
cells were insensitive [34].

p0265Several further microarray studies confirmed that
gene signatures were associated with clinical outcome
of diffuse B-cell lymphoma.However, among these stud-
ies there were disparities with regard to the number and
the nature of informative genes. A recent study tried to
circumvent the technical and bioinformatic issues of
microarray analysis by using quantitative real-time
polymerase-chain-reaction. Scientists from Miami and
Stanford studied the expression of 36 genes that had
previously been reported to be of predictive value
among 66 lymphoma patients. The prediction of sur-
vival could be based on only 6 genes [35]. This result
opens the interesting perspective that selecting infor-
mative genes that have been filtered through genome-
wide microarray studies may permit the application of
conventional methods in the future and may obviate
microarray applications in routine clinical testing.

s0190PERSPECTIVES

p0270Microarrays have developed into an indispensable tool
for transcriptome analysis in basic research, translational
studies, and clinical investigations. In experimental
pathology, gene expression activities under various con-
ditions can be assessed at an unprecedented quantity,
speed, and precision. Commercial microarray platforms
exhibit a high degree of standardization allowing service
laboratories and academic core facilities to offer the tech-
nology to users from industry and academia, respectively,
who do not have the means to develop their own specific
expertise in this field. Together with other –omics tech-
nologies, transcriptomics will be an essential component
in worldwide efforts to understand normalcy and disease
at the systems level. Already now, transcriptomic
approaches are a standard strategy for data collection in
systems biology and systems medicine.

p0275In the clinical situation, the current instabilities of
predictive gene signatures will probably be scrutinized
by enforcing standard operating procedures and efforts
aiming at the general standardization of diagnostic
approaches, as was the case in the optimization period
of microarray technology. The strong need for predic-
tive markers in the clinic, the issue of personalized med-
icine, and the requirement to study the effects of old
and novel drugs at the genome level are expected to
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increase the use of microarray technologies even fur-
ther. Alternative high-throughput approaches such as
proteomic profiling combined with mass spectroscopy
or deep sequencing will probably not be regarded as
competitive approaches. Rather, these techniques will

further increase our knowledge on complex biological
phenomena and pathogenic mechanisms. New types
of microarrays have become available that allow analysis
of alternative splicing at the level of the transcriptome,
as well as to analyze the expression of microRNAs, a

GC genes Genes specific for either group
of DLBCL

2 DLBCL
signatures

tumor

A B C

tumor

Figure 7.22f0110 Gene signatures representing GC-like DLBCL and activated B-like DLBCL [33]. (A) Genes characteristic for
normal germinal center B-cells were used to cluster the tumor samples. This process defines two distinct classes of B-cell
lymphomas: GC-like DLBCL and activated B-like DLBCL. (B) Genes that were selectively expressed either in GC-like
DLBCL (yellow bar) or activated B-like DLBCL (blue bar) were identified in the tumor samples. (C) Result of hierarchical
clustering that generated GC-like and activated B-cell-like DLBCL gene signatures.
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novel class of gene expression regulators in develop-
ment, normal physiology, and disease. Rapid progress
will also be made in understanding the molecular basis
for the transcriptional alterations that can be assessed
by microarrays, by combining chromatin immuno-pre-
cipitation (ChIP) and microarray analysis (ChIP-on-
chip). Last but not least, efforts are being made to
develop chip technologies that permit a truly quantitative
estimation of mRNA expression. It is tempting to specu-
late that these novel chip technologies will gradually
replace the currently availablemicroarrays, facilitate tran-
scriptome analysis with even higher precision, and obvi-
ate extensive validation (based on real-time PCR,
immunohistochemistry, or other methods) and quantifi-
cation procedures. Finally, microRNAs that have been
overlooked for many years in transcriptomics have
started to demonstrate their impact on gene regulation
and possibly also predictive power in tumor analysis.
Since the microRNAome is much smaller than the tran-
scriptome, a current challenge is to understand the regu-
latory relationships between small RNAs and theirmRNA
targets. After all, the race is open for deciphering the pro-
tein and RNA master regulators of the transcriptome.
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Figure 7.23f0115 Survival analysis of DLBCL patients distinguishable according to gene expression profiling, conventional clinical
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