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  Abstract   Cancer is a complex disease with a myriad of genes and molecular 
processes involved. To unravel its underlying mechanisms, the main approach to 
date has been the study of individual genes and their association with carcinogen-
esis. As a recently emerging new paradigm, systems biology has complemented 
this time-honoured concept by promoting a holistic view of cancer as a network-
associated disease. This new strategy is reflected par excellence by the construction 
of genome- and proteome-wide interaction networks and their utilization. We give 
here an overview of the current status of the human interactome and report first 
successes in its application in cancer research. In particular, interactomics-based 
analyses have been successfully undertaken for the characterization and de novo 
prediction of cancer-associated genes and processes. Although considerable chal-
lenges are still to overcome, interactomics promises to become a cornerstone in the 
systems biology of cancer.    

   9.1   Introduction 

 Cancer is not a single uniform disease, but displays a striking heterogeneity in its 
cause, progression and prognosis. In fact, more than 100 distinct types of cancer 
have been identified in a variety of tissues over the last decades (Hanahan and 
Weinberg  2000) . The recent progress in molecular profiling of cancer is likely to 
contribute to an even larger number of biologically and clinically distinct tumor 
sub-types (Alizadeh et al.  2000) . Such observed heterogeneity is not only of interest 
for cancer researchers, but has also direct consequences in the clinical prognosis 
and medical treatment of cancer patients. 
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 Where does the observed heterogeneity originate from? Intensive research has 
discovered a large number of genes involved in the development of cancer. 
Especially, the study of genetic mutations identified many cancer-associated genes 
and has led to the view of cancer as a primarily genetic disease. A recent census of 
human cancer genes showed that somatic and germline mutations in almost 400 
genes have repeatedly been reported to contribute to oncogenesis (Futreal et al. 
 2004) . Additionally, numerous epigenetic and transcriptional changes have been 
associated with cancer (see also chapters 4 and 5   ). 

 How can we cope with this complex and heterogeneous disease in which so 
many genes and processes are involved? For a long time, the main approach to 
unravel oncogenesis has been to identify single cancer-associated genes and to 
characterize them one at a time. Undoubtedly, this paradigm in cancer research has 
supplied us with an impressive catalogue of pathogenic changes on molecular level. 
Despite considerable success, however, it has not yet delivered the much antici-
pated “magic bullets” against this disease. 

 Recently, a new discipline has emerged with the advent of large-scale bio-
logical data sets:  Systems biology . It can be viewed as a complementary – but 
not opposing – approach to the classical reductionistic strategy for the study of 
the biological processes. In contrast to reductionistic approaches based on the 
dissection of processes into their most elementary levels, systems biology is 
more holistically orientated. The guiding principle of systems biology is that 
the total system can be more than the sum of its parts and can acquire properties 
that are not implied in the single components. 

 Following this principle, we seek to study a biological system as a whole. The 
aim is to determine the rules governing its behaviour and eventually to generate 
qualitative and quantitative predictions concerning its response to perturbations 
and modifications. To achieve this, two requirements have to be fulfilled: (1) 
a sufficient amount of data and information describing the system has to be avail-
able, and (2) a computational model of the system has to be designed. Whereas the 
first requirement is increasingly met with the development of new high-throughput 
techniques, the second one still demands considerable efforts. For instance, when 
we aim to represent the whole system, we need to choose an adequate level of 
resolution. Finding this level is challenging, since there is usually a trade-off 
between computational feasibility and detailed representation of the molecular 
systems due to their mere size and complexity. The inclusion of too many compo-
nents can lead to ill-determined models of the system with many parameters 
unknown, whereas a too severe restriction can results in an incomplete model with 
a lack of coherence. In fact, the choice of a suitable model depends not only on the 
research objective, but also, more practically, on the quality and quantity of data 
and information present. 

 In response to this difficulty, various methodologies for different levels of reso-
lution have been brought forward in systems biology to date. A nowadays very 
popular approach is based on the representation of biological systems as mathemat-
ical graphs and has laid the ground for the blooming field called  network biology . 
In the context of molecular systems, for instance, the molecules are typically 



1699 Interactomics and Cancer

represented as nodes and their interactions as edges (Fig.  9.1 ). Although this type 
of representation is clearly a stark simplification of the underlying physical system, 
a major advantage of this approach is that the analysis of large networks becomes 
feasible. Also, the underlying graph-theory has been well developed and offers 
researchers a variety of tools. In fact, with its beginning dating back to Leonard 
Euler in 1736, graph theory has made profound impact in social, physical and com-
puter sciences (Euler  1736) . The application of graph-theory to biology seems to be 
well suited where large networks are involved in the process of interest. Thus, it is 
not surprising that the concepts of network biology have been especially applied to 
elucidate the complex processes during oncogenesis and to consolidate the hitherto 
divergent observations. A short introduction to graph theory and its basic concepts 
is presented in Box 1.  

 The reminder of this chapter is following: We first present an overview of cur-
rent strategies to chart, to store and to analyse interaction maps. We focus here on 
protein–protein interaction data as many concepts of network biology have origi-
nally been demonstrated using protein interactions. Notably, we describe the gen-
eration of protein interaction maps in some details, as it can have a considerable 

  Fig. 9.1    Graphical representation of the current human protein–protein interactome as stored in 
the UniHI database (http://www.unihi.org) .  Altogether, it comprises over a quarter of a million of 
interactions derived from experimental resources and by computational prediction. Nodes and 
edges in the displayed graph represent proteins and their interactions. The different colours indi-
cate the source of interactions: blue - Y2H screens, red - literature curation, green - orthology-based 
prediction, and grey - multiple evidence. Notably, distinct regions of the interactome are covered 
by different methods indicating the potential benefits of integration. The figure also illustrates the 
grade of simplification achieved by the graph-theoretical approach. The highlighted nodes sym-
bolizing the shown proteins ( left : mitogen activated protein kinase;  right : haemoglobin complex 
consisting of alpha and beta chains) are depicted for illustration only; they do not represent the 
actual location of these proteins in the interactome. Displayed protein structures were taken from 
the Protein Data Bank       
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influence on the final maps. In fact, it is of critical importance for researchers to 
have a basic understanding how interaction maps were derived to avoid pitfalls in 
their usage. Subsequently, several studies and methodologies utilizing protein inter-
action networks to study cancer are reviewed. For sake of completeness, some 
references to the application of transcriptional networks to cancer research are 
given. Finally, we discuss future challenges and directions in the generation of 
human protein interaction maps and their applications.   

   9.2   The Human Protein–Protein Interactome: 
Generation and Analysis 

 In the last few years, we have witnessed the rapid increase in the large-scale 
protein–protein interaction maps for various model organisms. This striking rise is 
mainly due to advances in the high-throughput experimental techniques such as Yeast-
two-Hybrid (Y2H), the coordinated efforts to systematically chart interactions by 
human experts as well as the progress in computational text-mining and prediction. 

   Box 1 Introduction to Graph Theory and Its Application to Network Biology 

     Graph-Theoretical Description of Molecular Networks 

 One of the most basic descriptions of molecular systems is given by their 
representation as mathematical graphs. For protein interaction networks, for 
instance, proteins are commonly represented as nodes and their physical 
interactions as undirected edges. For transcriptional regulatory networks, 
nodes symbolize both transcription factors and their target genes and are con-
nected by direct edges. The resulting graphs can be analyzed using various 
graph-theoretical measures: 

 A fundamental characteristic of a node in a mathematical graph is its 
degree, i.e. the number of edges to other nodes. The  degree distribution P(k)  
for a network can be defined as fraction of proteins with  k  interactions in the 
total network. It is an important feature of network to distinguish different 
network classes. Of special importance here is the power-law distribution 
( P ( k )  ~ k   - g   ) which is characteristic for the class of scale-free networks. It has 
been shown that such network architecture is more robust against random 
failure of single components. A consequence of the scale-free topology is the 
emergence of so-called network  hubs , i.e. highly connected nodes. Hubs are 
of particular importance for the network integrity and were associated with 
essential proteins (Jeong et al.  2001) . Finally, the  shortest path  length 
between two nodes is defined as the minimum number of edges included in 
the (directed) path between the two nodes.  
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As all these methods can lead to considerably divergent protein interaction maps (von 
Mering et al.  2002 ; Futschik et al.  2007a,   b) , it is important to have a basic under-
standing of the applied methodologies. In the following sections, we therefore 
introduce several current methods, discuss their pros and cons and outline their 
application to the human interactome. 

   9.2.1   Yeast-Two Hybrid System 

 The Y2H method is based on a screening approach using a set of modified proteins. 
The experimental basis of Y2H is the reconstitution of a multi-domain transcription 
factor (such as GAL4). Specifically, a protein-encoding cDNA of interest is cloned 
into a bait vector, and fused with the DNA binding domain of the multi-domain 
transcription factor. A second cDNA encoding a potentially interacting protein is 
cloned into a prey vector and fused to the transcription factor’s activation domain. 
Subsequently, the two yeast strains carrying the bait and prey hybrid proteins in 
plasmids are mated, resulting in yeast carrying both plasmids. If the bait and prey 
proteins interact, a functional transcription factor is reconstituted leading to the 
transcription of a reporter gene such as lacZ encoding for  b -galactosidase. In the 
high-throughput mode, whole libraries of bait and prey vectors can be screened for 
interactions. Thus, the main advantage of this approach is that it provides a platform 
for the rapid generation of large-scale protein–protein interaction networks and it 
does not need to be biased towards known interactions. However, the false positive 
rate for Y2H screens can be considerable and can even exceed the estimated true 
positive rates (Hart et al.  2006) . 

 Recently, the Y2H system was applied in two large-scale studies to screen 
human proteins identifying in total over ~5,500 new protein interactions, of which 
a selected sub-set was experimentally validated (Rual et al.  2005 ; Stelzl et al. 
 2005) . Notably, the overlap between the two studies is small: Only 17% of interac-
tions between common proteins were detected by both groups.  

   9.2.2   Literature Curation and Text-Mining 

 Besides high-throughput experimental approaches, the numerous small-scale experi-
ments described in the literature can be exploited to create large-scale protein 
interaction maps. Tapping into the wealth of published experiments, information on 
protein interactions is systematically extracted from the literature either by human 
experts or text-mining algorithms. The advantages of such procedures are that it is 
not biased  a priori  towards a particular experimental technique and that the charted 
interactions are determined under a broad range of conditions and protocols. 
Characteristic disadvantages are the inherent difficulty to estimate the false positive 
rate and the bias towards highly studied proteins. Numerous research groups have 
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followed this strategy to create large-scale human protein interaction maps (Bader 
et al.  2001 ; Salwinski et al.  2004 ; Pagel et al.  2005 ; Ramani et al.  2005 ; Mishra 
et al.  2006 ; Kerrien et al.  2007 ; Breitkreutz et al.  2008) .  

   9.2.3   Computational Prediction of Human Protein Interactions 

 Alternative to the large-scale experimental and literature-curation,  in silico  predic-
tion has been used to build large-scale protein–protein interaction maps (Lehner 
and Fraser  2004 ; Brown and Jurisica  2005 ; Persico et al.  2005) . This strategy is 
based on the assumption that interactions are evolutionarily conserved for ortholo-
gous proteins and thus interactions detected between proteins in lower organisms 
can be extrapolated to their human orthologs. A main advantage of this method is 
that it is entirely computational and thus enables rapid and cost-effective construction 
of human protein–protein interaction maps. Disadvantages are that it is purely 
predictive in nature and false positives can arise through erroneous mapping to 
human orthologs or that interactions are simply lost during evolution.  

   9.2.4   Databases for Human Protein Interactions 

 Several human protein interaction databases have been established to help research-
ers find and analyze interaction partners of proteins of interest. These databases can 
generally be divided into two different categories: The first one is based on the 
manual-curation of published literature and includes the Human Protein Reference 
Database (HPRD), the Biological General Repository for Interaction Datasets 
(BioGRID), IntAct, the Database of Interacting Proteins (DIP), the Biomolecular 
Interaction Network Database (BIND) and the MIPS Mammalian Protein–Protein 
Interaction Database (MPPI) (Bader et al.  2001 ; Salwinski et al.  2004 ; Pagel et al. 
 2005 ; Mishra et al.  2006 ; Kerrien et al.  2007 ; Breitkreutz et al.  2008) . The other 
category of databases also includes computationally predicted interactions; exam-
ples of such databases are the Online Predicted Human Interaction Database 
(OPHID) and HomoMINT (Brown and Jurisica  2005 ; Persico et al.  2005) . 
Currently, HPRD is one of the major sources for human interaction data and – as 
the name implies – dedicated to human proteins. Besides interactions, it also pro-
vides information on domain architecture, post-translational modifications, disease 
association and biological pathways. Other databases e.g. BioGRID, IntAct, DIP 
and BIND are the repositories for a more diverse set of organisms and provide 
access to interaction data for other model organisms such as yeast, worm and fly. 

 Although these databases chart thousand of interactions from human proteins, 
their coverage in terms of the whole human interactome remains rudimentary. 
Comparative analysis revealed a very limited overlap between them (Chaurasia 
et al.  2006 ; Futschik et al.  2007a ; Ramírez et al.  2007)  (Fig.  9.1 ). Naturally, the 
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question arises why these maps have such small degree of overlap. One reason is 
likely that current maps are highly unsaturated. Given an estimated total size of 
human interactome of ~650,000 interactions, even HPRD – as one of the largest 
sources – covers less than 10% of the total interactome (Stumpf et al.  2008) . 
Additionally, current maps display a strong detection bias, i.e. they are enriched in 
characteristic types of proteins while depleted of other types (Futschik et al. 
 2007a) . For example, literature-based maps show a significant enrichment in sig-
nalling proteins which is probably due to their popularity as biomedical research 
topic. Since currently available maps are incomplete and might contain comple-
mentary information, we and others reasoned that their integration can be benefi-
cial. Therefore, several research groups have started to integrate the diverse protein 
interaction datasets available (Prieto and De Las Rivas  2006 ; Chaurasia et al. 
 2007) . For instance, the Unified Human Interactome database (UniHI) including 
human interaction data from 14 different sources stores over ~250,000 interactions 
between ~22,000 proteins and thus constitutes one of the most comprehensive col-
lections of human protein interactions at present (Chaurasia et al.  2009) . Such 
centralized repositories liberate researchers from laborious and time-consuming 
integration of the diverse interaction data sets. An overview of several current 
resources for human protein interactions is provided in Table  9.1 . A more com-
plete list of protein interaction databases is compiled by the Pathguide project 
(Bader et al.  2006) .    

   9.3   Application of Interactomics to Cancer Research 

   9.3.1   Network-Based Characterization of Cancer Genes 

 One of the first questions addressed by network-based approaches in cancer 
research is also one of the most intriguing: What makes a gene to a cancer gene? 
Although such naïve question may be somewhat puzzling at first, it makes natu-
rally sense in network biology to ask whether cancer-associated genes have 
characteristic properties within interaction networks. To address this question, 
graph-based methods can be applied to study network properties of cancer 
genes. An important concept here is  centrality  which evaluates the location 
within a network. Centrality of a node can be defined simply by its degree, i.e. 
the number of interactions or, more elaborately, by the number of shortest paths 
passing through this node. 

 Several research groups have applied such concepts to reveal the graph-theoretical 
properties and the role of cancer genes in human protein interaction networks 
(Wachi et al.  2005 ; Jonsson and Bates  2006 ; Hernández et al.  2007 ; Platzer et al. 
 2007) . For the analysis, the set of cancer-associated genes has first to be deter-
mined, for which commonly databases or microarray studies are used. As a second 
step, a disease network is created by integrating the cancer genes products (i.e. 
proteins encoded by cancer-associated genes) with available large-scale protein 
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interaction networks. Finally, the topological properties (e.g. degree distribution, 
centrality) of cancer genes within this network are computed and compared to those 
of genes that have not been associated with cancer. 

 Wachi and co-worker applied the above outlined strategy to study the centrality 
of genes that are differentially expressed in cancer (Wachi et al.  2005) . For their 
analysis, human interaction data was collected from OPHID. Microarray data were 
obtained from five patients with squamous cell lung cancer and compared to normal 

  Table 9.1    Resources for human protein–protein interactions described in the chapter. The size, 
the construction approach and additional information are given. For the calculation of the number 
of proteins and interactions in each dataset, proteins were mapped to their corresponding Entrez 
Gene identifi ers   

 Resource  Proteins  Interactions  Method  References  Resource location 

 MDC-Y2H  1,703  3,186  Y2H SCREEN  Stelzl 
et al. 
 (2005)  

 www.mdc-berlin.de/
neuroprot 

 CCSB-Y2H  1,549  2,754  Y2H SCREEN  Rual et al. 
 (2005)  

 www.vidal.dfci.
harvard.edu (flat 
file only) 

 HPRD-BIN  8,788  38,800  LITERATURE  Peri    et al. 
(2003) 

 www.hprd.org 

 DIP  1,085  1,397  LITERATURE  Salwinski    
et al. 
(2004) 

 www.dip.doe-mbi.ucla.
edu 

 BIOGRID  7,953  24,624  LITERATURE  Breitkreutz 
et al. 
 (2008)  

 www.thebiogrid.org 

 INTACT  7,273  19,404  LITERATURE  Hermjakob 
et al. 
(2004) 

 www.ebi.ac.uk/intact 

 BIND  5,286  7,394  LITERATURE  Bader et al. 
 (2001)  

 www.bind.ca 

 COCIT  3,737  6,580  TEXT MINING  Ramani 
et al. 
(2005) 

 www.Bioinformatics.
icmb.utexas.edu/
idserve 

 REACTOME  1,554  37,332  LITERATURE  Joshi   -Tope 
et al. 
(2005) 

 www.reactome.org 

 ORTHO  6,225  71,466  ORTHOLOGY     Lehner and 
Fraser, 
 (2004)  

 www.sanger.ac.uk/
PostGenomics/
signaltransduction/
interactionmap 

 HOMOMINT  4,127  10,174  ORTHOLOGY  Persico et al. 
 (2005)  

 www.mint.bio.
uniroma2.it 

 OPHID  4,785  24,991  ORTHOLOGY  Brown and 
Jurisica 
 (2005)  

 www.ophid.utoronto.ca 

 UniHI  22,307  200,473  INTEGRATION  Chaurasia 
et al. 
 (2009)  

 www.unihi.org 
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samples of the same patients. Using a paired  t -test, differentially regulated genes 
were determined and mapped onto the protein interaction network. The subsequent 
analysis revealed that up-regulated genes tend to be highly connected and more 
centrally located in the network compared to randomly selected genes. Down-
regulated genes tended to be also more highly connected but not significantly. 
Furthermore, they did not show an increased centrality. Based on their findings, the 
authors suggested that a core set of central genes has to be activated during the 
course of carcinogenesis. 

 Similar results were reported in a separate topological analysis performed by 
Jonsson and Bates  (2006) . In contrast to Wachi et al., this analysis did not depend 
on microarray experiments to define cancer-associated genes. To avoid a bias 
towards a particular cancer type, they selected a general set of cancer genes that 
were previously identified in a literature-based census (Futreal et al.  2004) . The 
human interaction network was constructed using an orthology-based approach. 
After mapping of cancer genes onto the human protein interaction network, the 
connectivity of each protein in the integrated network was computed. Results 
indicate that the cancer proteins show higher degrees than non-cancer proteins. 
Cancer proteins also tend to function as central hubs, reflecting their role as a key 
player in protein–protein interaction network. Clustering analysis additionally 
showed that cancer proteins, on average, are more frequently located in the inter-
faces between clusters indicating an enhanced role in the coordination of different 
cellular processes. 

 Following the same strategy as Wachi et al., Hernández and colleagues 
reported somewhat contrasting results for the topological properties and organi-
zation of cancer gene products in the human interactome network (Hernández 
et al.  2007) . They started their analysis by creating an integrated set of human 
interactome originated from five manually-curated literature-based dataset. 
Microarray data sets for prostate, lung and colorectal cancers were utilized and 
differential expression was calculated. Topological analysis of the integrated net-
work revealed that down-regulated genes consistently tend to be more centrally 
located. In contrast, the centrality of up-regulated genes was dependent on the 
chosen cancer type. They also found that topological properties of down-regulated 
cancer genes are correlated with common biological processes and pathways 
that lead to cancer. However, both types of genes appear to be important for the 
organization and integrity of network structure. In particular, the elimination of 
cancer-associated genes from the network results in a faster breakage of the original 
network in smaller networks than those observed for elimination of randomly 
chosen genes. 

 Finally, the most comprehensive graph-theoretical study for cancer to date was 
conducted by Platzer et al.  (2007) . Altogether, they analysed 29 genome-wide can-
cer expression data sets using 22 individual graph-theoretical measures. For each 
study, differential gene expression was determined and sub-graphs of differentially 
regulated genes were constructed based on interaction data from OPHID. Various 
properties of the sub-graphs such as size, modularity and density were subsequently 
examined. The main result was that genes showing differential expression in cancer 
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tend to interact and to form larger sub-networks than expected by chance. Strikingly, 
however, the prevalence of hub proteins was not increased in cancer-associated sub-
graphs. The authors speculated that extended graphs with low density indicate 
networks of high robustness against the failure of single genes. This is especially 
intriguing in the context of cancer, as such finding would demand for the simultane-
ous therapeutic targeting of multiple proteins. 

 In summary, the described network studies give a first overview about the struc-
tural role of cancer genes in protein interaction networks. Nevertheless, care has to 
be taken in interpretation as current interaction maps often show divergence in 
structure due to different methods used for their assembly (Futschik et al.  2007b) .  

   9.3.2   Identification of New Cancer-Associated Genes 
and Processes Using Protein Interaction Networks 

 A second area in which protein interaction networks have been utilized in cancer 
research is the identification of new cancer-associated genes. The rationale behind 
these investigations is that interacting proteins are likely linked to the same or simi-
lar phenotype. A leading example is Fanconi anemia, a genetic disease, for which 
seven of the nine associated proteins form a physical complex involved in DNA 
repair. Although interaction data can provide a suitable first basis for  de novo  iden-
tification of disease-causing genes, additional information has commonly been 
utilized to improve specificity. 

 For many years, genetic linkage studies were the most potent approach to find 
new disease-causing genes. A major difficulty, however, is to pick the right gene 
within extended chromosomal regions that have been linked to a disease. Oti et al. 
showed that this task can be considerably facilitated using protein interaction data 
(Oti et al.  2006) . For genetically homogenous diseases, they predicted new disease 
associations when genes fell within an identified susceptibility locus and have 
protein interactions with a gene known to cause this disease. This simple method 
of data integration led to a tenfold increased specificity compared to randomly 
selected candidate genes at the same locus. Notably, Oti et al. also deduced that 
protein interactions added as much information as localization to the prediction 
accuracy. In a similar study, Franke et al. extended the protein interaction network 
by including microarray and gene annotation to generate a functional interaction 
network (Franke et al.  2006) . Also, new candidate genes were identified in the 
larger network neighbourhood of known disease genes, avoiding the restriction to 
direct interactors only. 

 One requirement of these studies is that we have to know already a set of genes 
associated with a certain disease. This set can be then used to “anchor” a disease 
in the human interactome. If however no such genes are known, this approach 
cannot be used. To overcome this limitation, Lage et al. catalogued human pheno-
types in a computationally tractable manner (Lage et al.  2007) . Their motivation 
was that similar diseases might share the same molecular basis. Having defined a 
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score for the similarity of phenotypes, information for a specific disease can then 
be deduced from similar diseases. Thus, candidate genes can be predicted even if 
no other gene associated with the specific disease is known yet. For prediction, 
Lage et al. integrated human protein interaction with linkage data in a similar man-
ner as Oti et al. and Franke et al. Using an  in silico  pull-down approach and the 
similarity of phenotypes, they extracted known and new complexes and predicted 
several novel candidate disease genes involved in disorders such as cancer, 
Alzheimer’s, diabetes and coronary heart diseases. Detailed analysis for epithelial 
ovarian cancer lead to the identification of a new candidate gene, Fanconi anemia 
group D2 protein ( FANCD2 ) placed in a complex with breast cancer type 1 sus-
ceptibility protein ( BRCA1 ) and breast cancer type 2 susceptibility protein 
( BRCA2 ). This protein has been associated with different types of cancer, but not 
with epithelial ovarian cancer so far. 

 A conceptually similar network-based modelling approach was applied by 
Pujana et al. to predict new candidate genes involved in breast cancer (Pujana et al. 
 2007) . They assumed that genes, which are functionally related or showed con-
served co-expression across species, might cause a similar phenotype. To test their 
hypothesis, they created a cancer-specific network with four known breast cancer-
associated genes:  BRCA1 ,  BRCA2 ,  ATM , and  CHEK2 . Neighbours of each refer-
ence gene set were further ranked using a scoring system based on co-expression, 
phenotypic similarity, and genetic or physical interactions among orthologs of the 
proteins in other species. They identified a new gene ( HMMR ) that was found to be 
associated with an increased risk of breast cancer. 

 In addition to prediction of novel cancer-associated genes, interaction net-
works were also employed to unravel cancer-related molecular processes. As one 
example, Chuang et al. applied a network-based classifier to identify sub-net-
works as markers for breast cancer prognosis (Chuang et al.  2007) . To find the 
sub-networks, they mapped the gene expression profiles of metastatic and non-
metastatic patients on a human protein–protein interaction network. Subsequently, 
they computed activity scores of all associated members to rank the sub-network 
as a whole. Their finding showed that high scoring sub-networks were enriched 
in many cancer-related biological processes such as apoptosis, proliferation, tis-
sue remodelling, signalling and survival. Their analysis also indicated that identi-
fied modules were more reproducible than individual genes selected without 
network information, and that they achieve a higher accuracy in the classification 
of metastatic  versus  non-metastatic tumors. Another advantage of this approach 
is that it also captures those genes which may have not been detected based on 
gene expression data alone. Such non-differentially expressed genes could be an  
integral part of a complex and be required for connecting high scoring proteins in 
a sub-network. In fact, Chuang et al. found that a large number of the identified 
network structures contained at least one protein that was not significantly 
expressed in metastasis while most of them served as a bridge between high scor-
ing proteins in a sub-network. This integration provides the opportunity to ana-
lyze the relationships between members of the complexes, and also increases the 
accuracy of the overall prediction.  
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   9.3.3   Analysis of Transcriptional Regulatory Networks 
in Cancer Research 

 Besides physical protein–protein interactions, transcriptional regulations have been 
analyzed in network biology to shed light on oncogenesis. The main building blocks 
of the constructed transcriptional regulatory networks are transcription factors and 
their target genes. In contrast to the protein interaction networks, the resulting graphs 
are directed, i.e. include edges directed from transcription factors to their target 
genes. Since transcription factors can be themselves target genes of other transcrip-
tion factors, this wiring scheme can lead to large connected networks. The ultimate 
goal is to build models that can “explain” observed expression patterns in terms of 
the underlying regulatory networks. Such models would go beyond the simple 
description of expression changes and could eventually provide us with a causative 
framework. This has become particularly interesting in the context of microarray 
technologies that have enabled a rapid genome-wide monitoring of expression. 

 In particular for yeast, this line of investigation has proven to be fruitful in reveal-
ing regulatory principles that are not detectable from the mere analysis of expression 
data (Janga et al.  2008) . Early studies, for instance, could link changes in the structure 
of regulatory networks to the type of external stimuli and the corresponding transcrip-
tional response (Luscombe et al.  2004) . Such impressive interrogations were made 
possible by the systematic experimental mapping of yeast transcription factor binding 
sites using Chromatin-Immunoprecipitation on chip (ChIP-chip) experiments. 
Unfortunately, the systematic experimental charting of human transcription factor 
binding sites is still at a very early phase with experiments being limited to a small 
number of transcription factors and cell types. At present, many collections of tran-
scription factor binding sites for humans thus rely considerably on  in silico  matching 
between promoter regions and position weighted matrices describing the consensus 
binding sites of transcription factors. Further difficulties in the construction of com-
prehensive regulatory networks are (1) a high number of false positive predictions of 
transcription factor binding sites based on simple sequence matching, (2) the choice 
of an adequate size of human promoter regions, (3) the combinatorial action of tran-
scription factors within  cis -regulatory modules and (4) the influence of the – gener-
ally unknown – chromatin structure on the accessibility of binding sites. 

 Despite these challenges, first efforts have been undertaken to construct genome-
wide regulatory networks for cancer research. Notably, Kluger and colleagues exam-
ined the topological properties of regulatory networks to characterize gene deregulation 
during tumorigenesis (Tuck et al.  2006) . For construction of a regulatory network, 
they utilized a collection of transcription factors stored in the Transcription factor 
(TRANSFAC) database. Potential target genes were determined by position weighted 
matrices. The basal connectivity network was then intersected with co-expression of 
genes from different cancer microarray studies to obtain condition-specific regulatory 
networks. In the subsequent analysis, network features such as degree distributions 
were used to differentiate between diseased and healthy patent samples. Although no 
significant improvement of classification accuracy was achieved compared to 
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conventional microarray analysis, the procedure offered some valuable insights in the 
potential causative mechanisms of gene deregulation. Most intriguingly, genes that 
discriminate best between disease conditions tend to be highly localized on the tran-
scriptional network. It is important to note that the applied strategy implies that 
expression levels of transcription factors can be proxies for their activity states. 
However, this might neglect important post-translational modifications. 

 An impressive project, which can also serve as a prime example for integrative 
network biology, is the assembly and analysis of the B-cell interactome by Califano 
and co-workers. This model of the molecular network for B-cells not only includes 
transcriptional regulatory, but also protein–protein and modifying post-translational 
interactions derived from a variety of experimental and computational resources. In 
the study by Mani et al., a strategy was developed to scrutinize the B-cell interactome 
for dysregulated interactions in three distinct types of lymphoma (Mani et al.  2008) . 
In contrast to conventional microarray analysis focusing on the differential regulation 
of genes, the loss or gain of correlation between interacting genes was analyzed. 
Remarkably, the examination of dysregulated interactions pointed more clearly to the 
set of known genetic lesions than simple differential gene expression did. Furthermore, 
potential downstream effectors could be identified which would have been missed 
using gene expression alone. Notably, these results probably would not have been 
derived without the construction of a cell type-specific network.   

   9.4   Summary and Outlook 

 Cancer shows a striking complexity in the cellular mechanisms involved and, 
despite all successes in cancer research, the untangling of these interwoven pro-
cesses remains one of the most formidable tasks in molecular biology and medi-
cine. For a long time, genes and their implications in cancer were studied one at a 
time. This time-honoured strategy has now been complemented with systems-wide 
studies of disease-associated mechanisms. A central position in the new paradigm 
has taken the uprising field of network biology. Applied to biomedicine, diseases 
represent particular states of the underlying molecular network; a perspective that 
was already brought forward several decades ago by S. Kauffman (Kauffman 
 1993) . Following his influential ideas, cancer can be perceived as attractor states 
that might display remarkable robustness. Although based mostly on theoretical 
reasoning, we might argue to view cancer as a network-associated disease which 
requires complex intervention for its treatment (Kitano  2007) . 

 A pivotal role in this new system biological strategy will be the study of protein 
interaction networks. Proteins and their aberrant interactions have long been known 
to be crucial in oncogenesis. With the construction of comprehensive interaction 
maps, we are now approaching a stage where the influence of dysfunctional pro-
teins can systematically be dissected and potential interventions designed. Despite 
its early successes and rapidly growing popularity, the application of interactomics 
requires some caution. 
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 Interaction maps of molecular processes are frequently highly rudimentary. This 
is also the case for human protein–protein maps in spite of their impressive size. 
At present, they are still scanty and are likely to include a considerable number of 
false positives. These shortcomings of current protein interaction networks – as well as 
of other types of molecular networks – underline the necessity of integrate comple-
mentary data and information. In fact, only by constructing multi-dimensional 
datasets, one can harvest the full potential of protein interaction maps. At present, 
this is mainly performed by simple mapping of expression changes onto generic 
interaction maps extracted from databases. Notably, such simple strategies account 
poorly for the complex spatial and temporal aspects of carcinogenesis. One step 
towards a more accurate representation can be the creation of tissue-specific net-
works. This might be especially relevant for cancer research where the examination 
of genes can lead to contradictory results depending on the used experimental 
model. For instance,  RAS , a classical oncogene, has been shown to function in a 
tumor suppressing manner under certain conditions indicating the importance of 
the molecular context (Zhang et al.  2001) . Also, the usefulness of streamlined inter-
action networks has already been demonstrated by the described study of the B-cell 
interactome. Future molecular maps reflecting this complexity will provide highly 
valuable tools for biomedical research. Indeed, the integration of independent infor-
mation concerning expression and localization has already been used for the iden-
tification of dynamic as well as constitutive protein modules (Futschik et al.  2007c) . 

 To conclude, early applications have indicated the large potential of network biology 
in cancer research. Progress in experimental techniques and computational methods 
will continue to improve the coverage and sensitivity of interaction networks. A focus 
of interactomics – especially in its application to cancer research – will be on the 
combination of different types of networks, such as protein-protein, transcriptional 
regulatory and metabolic networks, to enable the creation of detailed molecular mod-
els of oncogenesis. Furthermore, the integration of interactions networks with the rich 
datasets generated by ongoing cancer-related sequencing, microarray or imaging proj-
ects is likely to provide us with molecular maps of unprecedented detail for the human 
organism in health and disease. Thus, network biology promises to contribute substan-
tially to a better understanding of the complexity of cancer and eventually to its cure.      
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