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Summary  

Molecular networks, their representation and analysis have attracted increasing interest in recent years. 

Although the importance of molecular networks has been recognized for a long time, only the advent 

of new technologies during the last two decades have delivered the necessary data for a systematic 

study of molecular networks and their complex behavior. Especially the surge of genome-wide data as 

well as the increase in computational power have contributed establishing network and systems 

biology as new paradigms. The conceptual framework is generally based on an integrated approach of 

computational and experimental methods. In this chapter, we introduce basic concepts and outline 

mathematical formalisms for representing and analyzing molecular networks. In particular, we review 

the study of transcriptional regulatory networks in prokaryotes and of protein interaction networks in 

human as prime examples for network-orientated approaches to complex systems. The chapter is 

concluded with a discussion of current challenges and future directions of network biology.  

 

1 Overview 

Biological systems can range from a tiny bacterium in the soil to large food webs across the oceans. 

Despite striking differences in size and appearance, they have one thing in common: they are complex 

networks made out of numerous single components interacting with each other. The cell can be seen 

as a leading example of a highly organized network with a plethora of single parts miraculously 

interwoven. While biological networks are truly fascinating, they are at the same time notoriously 

difficult to study due to their intrinsic complexity. For a long time, this was especially the case for 

molecular networks, as lack of technology limited the simultaneous measurement of the various 

components and interactions. This situation has dramatically changed with technological 

breakthroughs in genomics, proteomics and metabolomics enabling the profiling of thousands of 

molecules. 

In molecular biology, this had motivated a shift of paradigms from reductionism, that places single 

components in the foreground, to systems biology, where we aim to study molecular processes as a 

whole [1-2]. The key idea of systems biology is that the total system is more than the simple sum of its 

single components, i.e. new properties of a system are emerging that are not exhibited by its single 
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isolated components. The two main branches of systems biology are (i) generation of systems-wide in 

vitro and in vivo (and possibly quantitative) data and (ii) in silico representation and analysis of the 

biological systems. Besides providing a better understanding of complex molecular mechanisms, 

systems biology aims to establish a framework for integration and consolidation of different types of 

data. This is particular important, as the current bottleneck in biomedical research is frequently not the 

generation of data, but their analysis and interpretation.  

The application of systems biology can be manifold. Signaling pathways provide an excellent case 

how models of complex mechanisms can help biomedical research. The identification of one disease 

target in a pathway implies that other components of the same pathway may serve as alternative drug 

targets increasing drastically the possibilities for novel therapeutic interventions. For instance, the 

cholesterol synthesis pathway, whose end product is linked to cardiovascular diseases, can be 

nowadays targeted by multiple drugs. It should be however noted, that although the term systems 

biology has been coined only recently, many ideas of systems biology have been introduced much 

earlier.  

A major challenge of systems biology is the adequate representation of the system. Numerous 

components might have to be included for a consistent model. Especially for larger biological systems, 

the representation and analysis is computationally challenging. Here, concepts of network biology 

might help [3]. Its basis is the representation of biological systems as mathematical graphs. This leads 

to considerable simplification (see figure 1 as example): Molecular networks are conceived as 

connected sets of vertices, which can be analyzed using well established tools of graph theory.  

The importance of network-based approaches and their implementation will be illustrated on two 

specific types of networks in this chapter: First, we will review the study of transcriptional regulatory 

networks in prokaryotes. Transcriptional regulation in prokaryotes has been a focus of molecular 

biology, since the seminal work by Monod and Jacobs elucidating the genetic regulation of the Lac 

operon [4]. In fact, many insights into molecular networks and their functioning have been gained by 

the study of transcriptional regulation in prokaryotes. We will thus introduce the underlying biology 

and give an overview how to model regulatory networks.  

As the second type of networks, physical protein interaction networks in human will be discussed. 

Proteins are of crucial importance for the correct functioning and orchestration of many cellular 

processes. Most proteins do not function alone, but within a cellular context network by interactions 

with other proteins. To obtain a better understanding, several large-scale interaction networks for 

human proteins have been constructed. Besides summarizing current approaches to obtain a human 

protein interactome, we present some network-based studies in cancer research. Especially for cancer, 

systems and network biology might provide promising tools to deal with the variability and 

heterogeneity of carcinogenesis. 
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It should be noted that other type of molecular networks might allow - or even demand - different kind 

of representations and analysis tools. For instance, detailed knowledge of metabolic pathways has 

enabled the development of advanced mathematical frameworks, which can be used for a quantitative 

prediction instead of solely qualitative description [5]. For the types of networks, which we will be 

discussed here, the availability of high quality data is more restricted. Also, regulatory transcriptional 

networks and proteins interaction networks exhibit a high degree of intrinsic complexity making the 

formulation of exact models challenging.  

 

2 Transcriptional Regulatory Networks in Prokaryotes 

Transcriptional regulatory networks have drawn considerable attention because of various reasons. 

Besides the experimental ease of studying prokaryotes in the laboratory and their general importance 

in biology and medicine, prokaryotes are prime examples for adaption and optimization of intrinsic 

cellular mechanisms to extrinsic conditions. Due to evolutionary pressure, the genomes of the first 

prokaryotic organisms have been extensively re-modeled to adapt to different environmental 

conditions. This adaptation is facilitated by horizontal gene transfer and a fast generation time [6]. As 

consequence, prokaryotic organisms have successfully conquered most ecological niches on earth. 

Notably, the increasing number of sequenced genomes as well as of genome-wide expression studies 

has facilitated the study of prokaryotic adaption by means of bioinformatics and systems biology.  

Before we discuss in more detail approaches to elucidate transcriptional regulatory networks, we 

briefly review the main components of prokaryotic transcriptional regulation in the next sections. 

 

2.1 Transcription in Prokaryotes 

Transcription describes the process by which RNA polymerases read and copy information from DNA 

to RNA. The prokaryotic RNA polymerase is a complex formed by several catalytic subunits and a 

single regulatory subunit known as sigma (σ) factor. Transcription can be generally divided in four 

phases: (i) pre-initiation, (ii) initiation, (iii) elongation and (iv) termination. For regulation of gene 

expression, pre-initiation and initiation are the most important phases.  

During pre-initiation, a sigma factor binds to an upstream sequence region (also called the promoter 

region) of the gene to be transcribed. Usually, several sigma factors exist in bacterial genomes. One is 

normally considered as principal sigma factor responsible for expression of housekeeping genes, while 

the other sigma factors will regulate expression of genes required under specific conditions. After 

sigma factor binding, the RNA polymerase associates with promoter elements situated approximately 

at -10 and -35 bases upstream of the transcription start site.  
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Besides sequences recognized by sigma factors, the promoter can contain other specific sites which 

determine binding of different regulatory elements. In particular, short sequences can act as binding 

motifs for transcription factors which can be activators or repressors of gene expression. Thus, both 

sigma and transcription factors regulators recognize specific DNA patterns in promoter regions; and it 

is the combinations of these sequence elements that results in selectivity of gene expression. It is 

important to note that the initiation of transcription is not ensured by binding of sigma or transcription 

factors to the promoter, as cells have a limited pool of RNA polymerases and therefore subsequent 

assembly of RNA polymerases is rather a competitive process. 

After binding of the RNA polymerase to the sigma factor and initiation of transcription, elongation 

continues until the RNA polymerase core releases the RNA transcript and dissociates from the DNA 

template. The dissociation can be provoked by binding of a so-called rho co-factor or formation of 

hairpin structures in rho-independent transcriptional terminators [7]. The synthesized RNA can then 

serve as template (in form of messenger RNA) for protein synthesis or can have functionality by itself 

(e.g. in form of ribosomal RNA).  

 

2.2 Transcription Factors and Their Binding Sites  

As mentioned earlier, transcription factors are the main determinants for transcription initiation 

besides sigma factors. Their binding to specific sequences in the promoter region is typically regulated 

in response to intracellular or environmental stimuli. The transcription factor binding sites are 

normally 12 to 30 nucleotides long. To understand specificity of transcriptions, it is important to 

identify such binding sites. A common way is to search for a conserved short sequence (i.e. a 

consensus sequence) in the promoter region of genes under the control of the transcription factor. 

Alternatively, one can determine the binding site experimentally. To this end, the promoter region is 

fused to a reporter gene and subsequently truncated or modified until the area responsible for the 

specific gene regulation is localized. Mutation analysis can then be used to confirm the transcription 

factor binding site.  

Frequently, our primary interest does not lay on regulation of a single gene but on the characterization 

of genome-wide effects of transcription factors. In this case, chromatin immunoprecipitation can be 

applied in case a specific antibody for the transcription factor is available. The technique permits the 

co-isolation of the transcription factor and its bound DNA. Subsequently, the isolated double stranded 

DNA can then be labeled and hybridized onto a microarray (ChIP-chip) [8-10] or sequenced (ChIP-

seq) [11-12] in order to determine the promoters which were bound to the transcription factor.  
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2.3 Gene Expression Control by Small RNAs 

Only recently, the importance of small non-coding RNAs (ncRNAs) for regulation of gene expression 

has been fully appreciated, despite evidence for regulatory ncRNA in bacteria was reported already 

over 30 years ago [13-14]. The list of ncRNAs detected in prokaryotes has rapidly increased with the 

number of new genomes being sequenced. Approaches for their identification range from 

computational predictions [15] to experimental techniques such as high-throughput pyro-sequencing 

[16]. ncRNAs can influence gene expression in various ways. They can bind directly to specific 

mRNAs affecting their stability or translation rate; or they can attach to proteins modifying their 

activity. Although the function of many ncRNAs is still unknown, their importance in gene regulation 

has become undisputed. In fact, cellular response to environmental changes seems to frequently 

depend of a tight coordination between ncRNAs and protein regulators. One intriguing example is the 

interplay of transcription factor Fur (Ferric uptake regulator) and an ncRNA termed RhyB in order to 

ensure fast response to perturbations in extra-cellular iron concentrations [17].  

 

2.4 Resources for Transcriptional Regulatory Interactions in Prokaryotes 

Recent progress in sequencing and expression profiling has delivered us a wealth of data and fueled 

the development of bioinformatics tools and online resource for the study of transcriptional regulation 

in prokaryotes. Unfortunately, a persistent challenge is that most studies and resources are biased 

towards a very small number of model organisms and thus may be of limited utility for the study of 

the great majority of prokaryotes. However, it can be expected that prokaryotes share at least a 

rudimentary basic regulatory network, as they appeared to have derived from a common ancestor. 

From this common network, branches might have then evolved to adapt to specific external conditions 

[18]. Thus, genome level comparison of well studied model organisms, such as Escherichia coli [19]; 

[20]; [21] and Bacillus subtillis [22-23], might still be useful for interpretation of regulatory networks 

in less studied organisms. 

Table 1 gives a short list of selected tools and resources for the study of transcriptional regulation in 

prokaryotes. It should be noted that this research field is highly dynamic; and new tools and databases 

are rapidly developed. Thus, table 1 should not be considered as a comprehensive overview, but rather 

collection of initial pointers for the interested reader.  

 

[TABLE 1] 
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2.5 Inferring Transcriptional Regulatory Networks 

Capturing the transcriptional regulatory network of a given organisms should equip us with an explicit 

and comprehensive model of its transcriptional regulation. In the ideal case, this network would 

contain all regulatory components (such as TFs, ncRNAs and their binding sites) as well as all the 

regulatory interactions between them and with their targets. Such a model could enable us to predict 

accurately transcript levels of target genes. Clearly, comprehensive regulatory networks would not 

only be valuable for microbiology, but could be of crucial importance for future bioengineering and 

synthetic biology permitting accurate prediction of cellular responses to genetic manipulations. At 

present, however, we are still far from such models. Despite all the recent technological 

breakthroughs, deriving models for transcriptional regulatory networks remains a formidable task even 

for simple processes in well studied organism.  

 

Commonly, transcriptional regulatory networks are represented as directed graphs comprised of nodes 

and edges. Nodes can represent transcription factors or ncRNAs and their target genes, while edges 

indicate regulatory interactions between the different components of the network [24]. To re-construct 

these networks, most approaches can be broadly classified into three types:  

 

(i) Knowledge-based approaches: Traditionally, models of transcriptional regulatory networks 

have been derived using the knowledge accumulated in scientific literature and databases. Here, 

an initial network model is constructed to simulate the system´s behaviour under different 

perturbations and is subsequently adjusted to consolidate it with experimental observations. 

Examples for this approach can be found further below, where we discuss differential equations 

for modeling.  

(ii) Reverse engineering: Recently, reverse engineering has become an promising alternative given 

the rapid increase of available expression data. Here, regulatory interactions are inferred directly 

from observed expression patterns of genes using correlation measures. The predicted 

transcriptional response is then compared with measured expression data and the network 

structure is iteratively improved. Reverse engineering methods might reduce the time needed to 

obtain accurate regulatory network models, but demand also large amount of data for inference 

[25]. Network inference can be direct or module-based. Examples are given in the next section.  

(iii) Template-based methods: Thanks to astonishing advances in sequencing technology, the 

number of available prokaryotic sequenced genomes has greatly increased over recent years. 

Notably, many of these newly sequenced genomes belong to organisms, for which only limited 

knowledge of their biology exist. In such cases, transcriptional regulatory networks of a 

phylogenetically related organism might be used as a template for inference. Such methods are 

based on evolutionary conservation of regulation and can take advantage of abundant 

information on regulatory interaction from model organisms. A good example of this approach 



Chapter 20   Springer Handbook of Bio- and Neuroinformatics 

 

Eds. Nik Kasabov & Francesco Masull            7 

 

is the work by Babu and coworkers who inferred conserved regulatory networks of an organism 

by comparing its genes to known TFs and their gene targets in E. coli [26]. Homologs of E. coli 

genes were identified by sequence comparison. If TF and its target are found to be conserved, 

their regulatory interaction is predicted to be also conserved. Clearly, template-based methods 

lose accuracy when applied to phylogenetically distant organisms. Here, additional analysis of 

potential binding sites for transcription factors might improve prediction of target genes [27]. 

 

2.5.1 Direct and Module-based Network Inference 

Direct and module-based methods use gene expression to detect and model the underlying regulatory 

interactions. Both methods assume that changes in gene expression are caused by changes in the 

expression of TFs. A direct inference approach was applied for E. coli by Faith and co-workers [47]. 

Initially, 179 microarrays measurement for 69 different conditions from nine previous studies were 

collected and expanded by further in-house 266 microarrays measurements for 121 selected 

conditions. The applied context likelihood of relatedness (CLR) algorithm is based on previously 

developed concept of relevance networks [48-49]. The CLR method assumes that expression of a gene 

and of its potential regulator should vary in a coordinated manner over time and across environmental 

conditions. As measure of correlation of expression, CLR calculates the mutual information between 

expression profiles. To assess significance of co-expression, the observed mutual information is 

compared to a background distribution of mutual information scores for all possible TF-gene pairs. 

Only pairs with mutual information scores that are significantly higher than the background 

distribution were subsequently included in the transcriptional regulatory network. The authors 

compared the detected interactions by CLR algorithm with those annotated in the curated RegulonDB 

database and found that the filtering for significant interactions reduced considerably the number of 

false positives. At a 60% true positive rate, CLR predicted 1079 regulatory interactions of which 741 

were novel.  

An alternative approach to capture relationships between regulators and their target genes is based on 

clustering of gene expression data. Clustering is commonly used to group genes into sets with similar 

expression patterns. Such sets of co-expressed genes, which are also called modules, may underlie the 

same transcriptional regulation and are the basic units of module networks. For these types of 

networks, we infer regulatory interactions between TF and whole modules instead of interactions 

between TF and their individual target genes. The usage of modules instead of single genes reduces 

drastically the number of variables in the model, and thus, the computational burden as well as the risk 

of over-fitting.  

 

This approach was used by Bonneau and colleagues to study the transcriptional regulatory network of 

the poorly characterized Halobacterium salinarum NRC-1 [50]. Genome-wide expression data for a 

variety of different environmental conditions and genetic mutations were clustered using the cMonkey 
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algorithm [51]. This algorithm performs parallel “biclustering” of genes and conditions. The derived 

clusters (or modules) of genes can therefore be specific to conditions, in which the genes are co-

expressed. This capacity of biclustering can allow subsequent identification of conditions, in which a 

regulator is active. The final transcriptional regulatory network was derived by the “Inferelator” 

method which connects expression changes of individual or multiple TFs to expression changes in the 

detected modules using a regression algorithm [52].  

 

2.6 Modeling of Transcriptional Regulatory Networks  

Once the structure of a regulatory network has been inferred, its behavior can be modeled. A key step 

is the selection of the mathematical approach to be employed. This decision will mainly depend on the 

amount, type and quality of available data and information. Several alternatives have been developed 

based on different mathematical frameworks such as differential equations [28], Boolean networks 

[29-30] or Bayesian networks [31-33]. In the following section, we will briefly illustrate their use in 

modeling transcriptional networks.  

 

2.6.1 Differential Equations  

Usage of differential equations to describe regulatory relationships has originated from the kinetic 

modeling of biochemical reactions [34]. A transcriptional regulatory network can be modeled by a 

system of linear differential equations with its rate parameters known or estimated. As exact 

parameters have typically to be estimated, it is important to limit the number of regulatory 

interactions. Therefore, a common assumption is that gene expression is determined by small set of 

global transcriptional regulators. Also, the use of differential equations for modeling is 

computationally expensive. Thus, they are commonly used only for modeling of small systems with a 

limited number of components and interactions.  

 

Ropers and co-workers used piecewise-linear differential equation to simulate the adaption of E.coli 

during transition from a carbon-rich to a carbon-poor environment [35]. Their model consisted of six 

piecewise-linear differential equations which represented the expression of key global regulators over 

time during the response to carbon limitation. The use of piecewise-linear equations permitted 

qualitative analysis of the network dynamics even as quantitative information was scarce. For 

simulation, the open source software tool “Genetic Network Analyzer” was used [36]. The resulting 

network has been extended in a later study to include also directionality of regulation and influence of 

metabolites on the network flux [37]. 

 

In a recent study, differential equations were used to model cell cycle regulation in Caulobacter 

crescentus [38]. The model described the dynamics of three global regulators (GcrA, DnaA, and CtrA) 

and other cell cycle proteins by sixteen nonlinear ordinary differential equations. Although the model 
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is of relative small scale, more than 40 parameters (rate constants, binding constants and thresholds) 

had to be optimized, after initial values were estimated based on experimental observations from the 

literature. As an application of the trained model, the phenotypes of novel mutants could be 

successfully predicted. This shows that modeling of differential equation modeling is feasible for cases 

where sufficient information is available and the size of the system is small. 

 

2.6.2 Boolean Networks  

In the framework of Boolean networks, gene expression levels are binned to the values 1 or 0. 

Therefore, Boolean networks assume that a gene can be either expressed, i.e. in the “on” state 

described with the value 1, or not expressed, i.e. in the “off” state described with the value 0 [39]. 

During simulation, the level of a gene is derived from the levels of other genes via a Boolean function. 

In particular, expression of a gene at a given time point depends on the expression of its regulators at 

the previous time point. The “on-off” assumption limits the capabilities of Boolean networks. Also, 

they fail to model transcription factors that regulate their own expression. Nevertheless, in cases where 

only qualitative knowledge is available and the size of the network is of moderate size, Boolean 

networks can explore the full state space. 

 

The work by Samal and Jain provide a good example of how Boolean networks can assist in system 

level analysis and modeling [40]. Their study is based on a previously compiled data set for E. coli 

[41]. The constructed Boolean network comprised almost 600 genes and 100 metabolites. Studying the 

dynamical properties of the network, they found that the network states are highly robust to 

perturbation of single genes, while the system is still highly responsive to environmental changes.  

 

2.6.3 Probabilistic Boolean Networks 

Frequently, the lack of experimental information on certain regulatory entities makes it necessary to 

include probabilistic elements. Probabilistic elements were introduced to Boolean networks to 

overcome their deterministic nature [42]. Each entity is modeled by a family of Boolean functions, to 

which probabilities are assigned. The function is chosen with assigned probability to predict the 

particular expression value of the target gene at certain time point or condition. The stochastic model 

allows a greater range of possible solutions and can cope with uncertainty. 

 

Chandrasekaran and Price integrated metabolic and transcriptional regulatory networks using an 

approach closely related to probabilistic Boolean networks [43]. Their method termed PROM 

(Probabilistic Regulation Of Metabolism) circumvents the tedious process involved in the 

determination of the Boolean rules between the regulator and its targets by deriving automatically 

interactions from high-throughput data. For E. coli, PROM was tested and compared with other state 

of the art methods that combine metabolic and gene regulatory data using Boolean rules. The main 
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advantage of PROM resides in its automatism to calculate conditional probabilities between gene 

states from expression data. The authors also demonstrated the capacity of their approach by genome-

scale modeling the metabolic and regulatory network of the Mycobacterium tuberculosis from 

available regulatory information and microarray data. Their model permitted the prediction of 

phenotypes for several TF knockout mutants as well as the identification of genes candidates for drug 

targeting.  

 

2.6.4 Bayesian Networks 

Bayesian networks display conditional dependencies between variables represented as nodes. Each 

node is associated with a function determining the probability of the corresponding variable. A 

drawback of Bayesian networks is the failure to model regulatory feedback loops, since they can infer 

only directed acyclic graphs. This limitation is partially solved by the use of Dynamical Bayesian 

networks (DBNs) [44].  

 

Hodges et al. [45] used an implementation of the Bayesian network to analyze microarray gene 

expression data from E. coli and model the response to 27 genes linked to the reactive oxygen species 

(ROS) detoxification pathway defined in the EcoCyc database [46]. Expression data from over 300 

measurements were utilized to score randomly initiated Bayesian networks. Subsequently, a consensus 

network was constructed from the networks with the highest posterior probability score. Even though 

the interactions of the consensus network did not fully match the known ROS pathway, it served as 

base for expansion. Some predictions of novel genes and interactions in the ROS pathway were 

successfully experimentally validated.  
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3 Protein Interaction Networks in Human  

Many - if not most – proteins do not function alone, but through interaction with other proteins in a 

defined physiological context. In fact, extensive experimental and computational analysis of protein-

protein interactions (PPIs) in S. cerevisae showed that a large part of the proteome is organized in 

cluster structures (or so-called modules), in which proteins are highly connected [53]. The study of 

PPIs is therefore an essential prerequisite for understanding many cellular processes. Here, we present 

a brief review of the experimental detection and computational prediction of PPIs as well as examples 

of relevant databases and network-orientated applications of PPI data. A graphical overview is 

presented in figure 2. 

[FIGURE 2] 

 

3.1 Types of protein-protein interactions and their detection  

PPIs can be broadly classified based on the complexes formed and the duration of interaction: (i) 

Interaction of identical polypeptide chains form homo-oligomers, whereas interactions of non-

identical chains form hetero-oligomers. (ii) Permanent interactions persist until the complex is 

degraded, whereas transient interactions can form and break in vivo [54]. For detecting different types 

of interactions, various experimental techniques have been developed. It is important to appreciate 

their characteristics as well as strength and weakness, as different techniques can produce distinct sets 

of interactions even for the same set of proteins. In the following section, we introduce the yeast-two-

hybrid (Y2H) and co-immunoprecipitation (Co-IP) approach, which have been used to screen for 

protein interactions in a high-throughput mode.  

 

3.1.1 Yeast-Two-hybrid (Y2H) assay 

Y2H is a well established system, which has initially been introduced in 1989 [55] to identify 

interactions between two selected proteins and has been now scaled up to cover the entire proteome of 

an organism. In Y2H system, one protein (the so-called bait) is fused with the DNA binding domain of 

a yeast transcription factor, while the second protein (prey) is fused with its activation domain. 

Physical binding of bait and prey proteins re-constitutes a functional transcription factor whose 

activity is monitored through a reporter gene. In the last decade, the technique has been successfully 

employed in large-scale mapping of PPIs for model organisms such as S. cerevisiae [56], C. elegans 

[57] and D. melanogaster [58] as well as for human [59-60]. In a high-throughput mode, large sets of 

yeast strains with bait and prey proteins are constructed. A common approach is to mate individual 
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strains containing bait proteins with a pooled library of yeast strains containing prey proteins [61]. For 

positive read-outs, the interacting prey protein will be determined by sequencing. Besides its usability 

for large screens, an attractive feature of Y2H assay is that weak transient interactions can be detected. 

However, false results may occur when additional proteins present in yeast positively or negatively 

affect binding of proteins assayed, or if bait or prey proteins itself have transcriptional activator or 

repressor activity. Also, interacting proteins have to be located to the nucleus for detection which can 

cause difficulties in screening of membrane proteins.  

Notably, the Y2H system was applied in two large-scale studies to screen human proteins [59-60]. 

Stelzl and co-workers used a combination of fetal brain cDNA library and a set of full length open 

reading frames (ORFs) to create over 11 000 Y2H clones [59]. Applying a pooling approach, more 

than 25 million protein pairs were tested resulting in the identification of over 3000 interactions. 

Independently, Rual and collaborators performed an Y2H screen with more than 8000 ORFs and 

detected ~2800 interactions [60]. However, caution needs to be taken in the interpretation of the 

reported interactions of human proteins, as they were measured in yeast (i.e. outside their native 

surroundings) and posttranscriptional modification altering binding might not be conserved in yeast. 

3.1.2 Co-immunoprecipitation (Co-IP)  

Co-immunoprecipitation is a commonly used method to test whether proteins are bound in the same 

complex in vivo. The target protein is immunoprecipitated with an antibody and fractionated by SDS-

PAGE. Co-immunoprecipitated proteins are subsequently detected by autoradiography or Western 

blotting. Also, protein sequencing may be used to identify the interacting proteins. It is important to 

note that this technique assumes that interactions are preserved when a cell is lysed under non-

denaturing conditions. To identify protein interaction in a high throughput mode, affinity purification 

is coupled with subsequent mass spectrometry [62-63]. On a system-wide level, this combination was 

first exercised for yeast [53]. A general observation was that a considerable part of the proteome can 

be organized in protein complexes. For instance, Gavin and colleagues could identify over 200 mostly 

novel complexes for an initial set of more than 1.700 tagged yeast proteins. Detailed analyses revealed 

that most protein complexes form a higher order network beyond the level of binary interactions. To 

inspect human complexes, Ewing chose an initial set of 338 bait proteins expressed in a human cell 

line (HEK293) [64]. Despite the rather small number of bait proteins, almost 25.000 interactions were 

detected. After filtering, ~6.500 interactions between over 2.200 proteins remained, most of which 

were newly identified. 

Note that identified interactions are not necessarily direct interactions, but might be indirect, 

interactions between proteins in the precipitated complex. This has consequences if we want to 

represent the complex by binary interactions in order to facilitate network analysis. As the internal 

structure of the complex is generally not known, two generic models are commonly employed: The 
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matrix model postulates that all proteins in a complex interact with each other. Naturally, this 

postulation results in many interactions especially for large complexes and thus implies potentially a 

large number of false positive binary interactions [65]. In contrast, the spike model assumes that direct 

interactions exist only between the bait and the co-precipitated proteins neglecting all other internal 

structures in the complex. 

 

3.2 Computational prediction of PPI  

Despite rapid advances in large-scale experimental techniques applied in mapping the human PPI 

network, the coverage of experimentally determined PPI data remains scarce compared to estimated 

total number of approximately 650.000 interactions [66]. However, computational methods might 

assist in the mapping of PPI networks. Computational approaches not only enable the discovery of 

novel putative interactions, but can also provide information for designing experiments for specific 

proteins. They are either based on predictions using existing data or on text mining of published 

literature.  

For the human interactions, the most important method is based on sequence conservation between 

organisms. This approach assumes that interactions are evolutionary conserved between orthologous 

proteins in different organisms. Initially, the concept of so-called ‘interologs’ was introduced to 

examine the biological relevance of Y2H-derived interactions [67]. Although subsequent experimental 

validation only resulted in a limited accuracy (up to 30%) for predicted PPIs in C. elegans, several 

large sets of human PPIs has been computationally extrapolated from experimentally measured 

interactions in lower organisms, especially yeast, worm, fly and mouse [68-70]. For the identification 

of human orthologs for interacting proteins, the InParanoid algorithm has commonly been employed 

[69-71]. In a first application of the interolog concept to human PPIs, interactions from three model 

organisms (S. cerevisiae, D. melanogaster and C. elegans) were utilized [69]. An interaction was 

predicted if both interacting proteins in a model organism have one or more human orthologs. Using 

this strategy, the authors generated a human interaction network comprising ~71,000 interactions 

between ~6,000 human proteins. The generated map was then filtered using Gene Ontology annotation 

and co-expression in order to identify a core network of over 9500 interactions between ~3500 unique 

proteins. A similar study was undertaken by Perisco et al. and lead to the construction of the 

HomoMINT database [70]. Besides using interactions from lower organisms, they analysed the 

domain composition of human proteins to refine the predictions of interaction. Instead of the 

InParanoid alogrithm, Brown and Jurisica applied a BLAST and reciprocal best-hit approach to 

extrapolate interactions between organisms [72]. They created first an integrated interaction dataset 

from various model organisms and mapped it to human orthologs by aligning proteins from each 

model organism against human proteins stored in SWISS-Prot database. As a next step, each top 

BLAST hit surpassing a pre-defined significance threshold was matched against the set of all protein 
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sequences of the model organism. A protein was considered as potential ortholog, if it matched the 

original query protein in reverse direction. Following this method, the autors generated a human PPI 

map containing ~25000 interactions between ~4000 proteins.  

Ideally, we would like to accurately predict potential protein interactions directly from the primary 

sequences. Notably, several groups have undertaken this challenging task and have reported the 

successful prediction of PPIs based on sequence data only [73-77]. The different approaches 

commonly represent a protein sequence as a vector of features (such as the physicochemical properties 

of amino acids) and a protein pair as concatenation of the corresponding feature vectors. For 

subsequent classification and prediction, support vector machine or other kernel based method can be 

trained to distinguish between concatenated feature vectors of interacting and non-interacting protein 

pairs. The reported high accuracy, however, is somewhat surprising given that many PPI depend on 

mutual recognition of detailed binding interfaces. Indeed, follow-up studies have shown that the 

reported performance depends strongly on the selection of training and test sets [77-78]. Thus, the 

results need to be interpreted with caution. Nevertheless, the proposed prediction methods might help 

to derive an initial set of potential PPIs for experimental validation.  

In addition to prediction based on existing data, potential PPIs can be computationally indicated 

evaluating existing literature. A simple text-mining approach is the measurement of the frequency of 

protein names co-occurring in the same scientific text. If the frequency is higher than expected by 

chance, a functional association and potential physical interaction might be implicated. An early 

application of this approach generated a network of over 6600 interactions connecting ~3700 human 

proteins based on text-mining of Medline abstracts [79]. However, one needs keep in mind that the 

deduced interactions need not to be physical. The advantages of such data mining techniques are that 

they are not biased to any particular study or experimental technique. Major drawback can be 

significant selection and detection bias towards well studied proteins [80]. 

 

3.3 Literature curation and PPI databases 

Besides experimental high-thoughput approaches and computational prediction, the manual curation 

of literature is one main strategy to obtain large sets of human PPIs. Indeed, many interactions have 

been derived in dedicated small-scale experiments and have been reported in the scientific literature. 

To curate this information in a systematic way, several databases have been established including the 

Human Protein Reference Database (HPRD)[81], the Biological General Repository for Interaction 

Datasets (BioGRID)[82], IntAct [83], Database of Interaction Proteins (DIP)[84], the Biomolecular 

Interaction Network Database (BIND) [85] and the Mammalian Protein-Protein Interaction Database 

(MPPI) [86]. 
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Notably, these databases are not synchronized with each other, and their data formats might also be 

incompatible. To merge publicly available protein interaction data, a time-consuming reformatting and 

mapping must be undertaken. To improve data exchange, Hermjakob et al. [87] proposed the 

Molecular Interaction (MI) extensible markup language (XML) format as a standard for the 

representation and exchange of protein interaction data. Notably, the PSI MI format is a database-

independent. This format can also help combine data from different sources. 

To relieve users of cumbersome data pre-processing and merging, several databases have integrated 

both experimental as well as predicted PPIs sets. Examples are I2D [68], STRING [88] and UniHI 

[89]. For instance, the Unified Human Interactome database (UniHI) includes human interaction data 

from 14 different sources and comprises approximately 250,000 interactions between over 22,000 

proteins [89]. The latest version of UniHI not only integrates the data from various sources, but also 

provides easy query options in order to extract a maximum of information. Furthermore, users can also 

map their own gene expression data onto the PPI network. Additionally, analyses can be performed to 

detect associations of a PPI network with biological processes, molecular functions and cellular 

components. To illustrate the application of UniHI, we used expression data for a mutant p53 cell line 

[90]. The original study focused on the role of mutant p53 in promoting transformation and metastasis 

in breast cancer through aberrant protein interactions. UniHI enables to derive a PPI network around 

p53 and to readily map the gene expression data onto the network. After filter of interactions by 

differential expression, we obtained a specific dys-regulated p53-focused network. Using the tool for 

functional analysis in UniHI, we detected DNA damage response, cell cycle and regulation of 

apoptosis as processes that are significantly enriched in the network (figure 3). As this example 

illustrates, we can rapidly indentify p53 interactions and functions that are potentially affected by dys-

regulation and that can serve as starting point for further study.  

[FIGURE 3] 

 

3.4  Network-based study of cancer 

For the study of pathogenic processes, the usage of PPI networks has become an attractive paradigm. 

Diseases occur frequently not due to malfunctioning of a single protein, but of whole complexes or 

modules. An example showing the importance of such complexes is the Faconi anaemia, a genetic 

disease associated with increased rate of leukaemia and bone marrow failure. Remarkably, the 

corresponding proteins of seven of the nine genes associated with Faconi anaemia form a physical 

complex involved in DNA repair. In fact, cancer per se can been seen as a classical example how 

alterations in several genes and proteins need to occur for the disease to develop and progress. Genes 

involved in cancer can be generally assigned into three broad classes based on their functions: i) 

oncogenes that can lead in their mutated form to aberrant growth signals; ii) tumour-suppressor genes 
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that deter cells from unrestricted proliferation; and iii) stability genes that keep genetic alterations to a 

minimum. It is important to note, that no single gene defect causes cancer. Rather, multiple mutations 

in oncogenes, tumour-suppressor as well as stability genes have to occur to overcome the control 

mechanisms imbedded in cells [91-92]. In support of this concept, recent sequencing of a large 

number of genes in breast and colorectal tumours revealed various mutations accumulated in a single 

tumour [93]. Eventually, the changes on molecular level lead to a series of complex alterations in cell 

physiology ranging from self-sufficiency in growth-signals and evasion of apoptosis to tissue invasion 

and metastasis [91]. Again, each of these steps displays a high variability and is driven by multiple 

molecular mechanisms. To study this complexity and to find new targets in cancer treatment, network-

based approaches promise to provide us with a powerful tool.  

 

3.4.1 Identification of Novel Cancer-Associated Genes  

PPI data have been utilized in various studies to identify novel genes associated which cancer. Such 

genes can aid in the early diagnosis and in the development of effective therapies. For instance, Russo 

AL et al. combined human PPI with others types of data to study prostate cancer [94]. Using gene 

expression and PPI data as well as pathway information, they identified the Met receptor tyrosine 

kinase as a metastatic biomarker and central regulator of prostate cancer progression. Another example 

of network-based approaches is the detection of GTP binding protein 4 (GTPBP4) as a marker for the 

breast cancer disease prognosis [95]. In this study, the authors first identified novel interactors of p53 

in Drosophila and searched for corresponding orthologs in human. One of these novel interacting 

partners of p53 was GTPBP4. Knockdown of GTPBP4 in a cancer cell line led to activation of p53. 

Also, it was observed that expression levels of GTPBP4 were inversely correlated with survival of 

breast cancer patient. In the study of glioblastoma, a highly aggressive form of brain cancer, Ladha 

and co-workers used a set of up-regulated genes as seed proteins for network construction [96].  

Analyses of the derived PPI network revealed that two proteins (casein kinase 2 catalyticsubunit α and 

protein phosphatase 1 alpha) connected to network structures potentially associated with cancer 

progression.  Both proteins were shown to be up-regulated in a set of glioblastoma tumour samples. In 

a conceptually similar work, a serous ovarian cancer-related network was constructed [97]. Initially, 

30 genes were obtained which shown consistent up- or down-regulation of expression in different data 

sets. They were used as initial nodes for network construction. Subsequent integration of gene 

expression data with PPI data identified highly connected proteins (hubs) involved in early events of 

cell cycle progression, mismatch repair and aneuploidy in ovarian cancer as well as novel cancer-

related genes, whose precise involvement remains to be investigated.  

As the studies show, the integration of PPI with complementary data is a common approach to detect 

cancer genes. A final example is a study of breast cancer, where the authors integrate PPI networks 

from different species with co-expression and genetic interactions as well as functional gene 
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annotation [98]. Starting from a set with four known breast cancer-associated genes (BRCA1, BRCA2, 

ATM, and CHEK2), the derived network was used for prediction of novel breast cancer susceptibility 

genes. For one predicted gene, HMMR encoding a centrosome subunit, a functional association with 

BRCA1 was experimentally demonstrated.  

3.4.2 Network-Based Analysis of Cancer-Related Mechanisms  

In addition to prediction of novel cancer-associated genes, PPI networks have also been utilized to 

untangle cancer features. In a recent study [99], the authors analysed features of prostate cancer 

features using PPI networks and molecular profiles in adjacent normal cells. First, specific set of genes 

were derived for normal cells, normal cells adjacent to tumour and tumour cells. Second, PPI networks 

for these set of genes were analysed.  Notably, they identified three sub-networks consisting of pro-

inflammatory cytokine, pro-metastatic chemokines and growth factors. Furthermore, genes encoding 

cytokines and growth factors were found to be expressed in adjacent normal epithelial cells (i.e. in the 

tumour microenvironment) suggesting that the molecular state of adjacent normal cells might have 

prognostic value. 

An emerging application of molecular networks analysis is the use of PPI networks to improve disease 

classification. Chuang et al. employed a network-based classifier for the prognosis of breast cancer 

metastasis, which is the main cause of death among breast cancer patients [100]. Gene expression 

profiles of metastatic and non-metastatic patients were mapped onto a human PPI network and sub-

networks, whose expression levels correlate with metastasis, were identified. Here, the expression 

level of a sub-network was defined as a function of expression levels of the included genes. Strikingly, 

the authors found that classification of metastatic versus non-metastatic tumour samples is more 

reproducible and more accurate, if it is based on sub-networks than on individual gene expression 

signatures only.   

Apart from disease classification, PPI networks have been employed in predicting cancer outcome 

using their modular structure [101]. A modular architecture can be imposed on the human protein 

interactome through inter-modular hubs (having low correlation of expression with interaction 

partners) and intra-modular hubs (having high correlation of co-expression with interaction partners). 

Taylor et al. studied the protein domain numbers, domain sizes and linear motifs (i.e. post translational 

modification and short binding motifs) of inter-modular and intra-modular hubs in the human protein 

interactome across 79 human tissues [101]. They identified that number of domains is higher for inter-

modular hubs, whereas domain sizes are larger in intra-modular hubs. Linear motifs are over-

represented in inter-modular hubs. Further, they compared the modularity of the protein interactome in 

breast cancer patients with respect to disease outcome  and found changes in modularity that were 

linked to the outcome of breast cancer.  Such changes may provide a prognostic signature for breast 

cancer.  
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4 Current Challenges and Future Directions  

Molecular interactions are crucial for the correct and efficient functioning of many cellular processes. 

Due to their biological relevance, the study of interaction networks has evoked increasing interest in 

their computational analysis. In parallel, systematic efforts and specialized databases have led to a 

dramatic growth in the number of chartered interaction data during recent years. This growth offers 

now an unprecedented wealth of interaction data to researchers for their investigations. 

As a long term perspective, we can aim to identify the full repertoire of molecular interactions for all 

components of a cell or even of a whole organism. Knowing this ‘interactome’ will doubtlessly yield 

better insights into the molecular machinery of cells and disease mechanisms. Naturally, a 

combination of experimental and theoretical approaches is needed to accomplish such ambitious goal 

and to consolidate the obtained interactions with gene expression, functional annotation or other types 

of biological data.  

At present, however, the available information about biological networks is still very limited and we 

have to work with crude approximations in network analyses. For instance, we would frequently prefer 

to utilize activity of proteins instead of transcript level for the modeling of molecular networks. For 

large networks, however, such analysis have remained beyond current state of the art, as necessary 

information of e.g. protein abundances as well as of post-translational modifications (PTMs) and their 

effects is required, that is, information which is generally not available yet on a genome-wide level. 

Also, molecular networks are inherently complex and difficult to model accurately, because of their 

numerous components and multiple layers. For illustration: Analyses of the human protein-protein 

interactome are typically confronted with the large number of predicted protein-coding genes 

(~25000), unknown spatial and temporal localization of many proteins as well as a numerous PTMs 

that might alter protein-protein interactions. In particular, alterations in transient interactions can lead 

to various changes in network structures and thus contribute to a highly dynamic network. The 

stability of such interactions depends on cellular physiological conditions and environment. This 

feature of molecular interactions should be always taken into account in the analysis and interpretation 

of interaction networks, especially as most presentations (such as figure 1) give a static - and 

potentially misleading - picture.  

The dynamics of interactions is frequently regulated by post-translational modifications of proteins. In 

general, the effects of PTMs are manifold: they can influence protein size, hydrophobicity, and other 

physical-chemical properties; they can enhance, change, or block specific protein activities; and they 

can target proteins to specific sub-cellular localization. Currently there are over 80.000 experimentally 

characterized PTMs across different organisms reported in the SWISS-PROT database. Despite of 
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their importance, however, PTMs are often not included in models of interaction networks due to 

missing data as well their unknown effects. In general, the full structure of global molecular networks 

is largely unknown, as they consist of many interwoven networks of different type such as regulatory 

transcriptional, metabolic or physical protein interaction networks.  

Despite current limitations, recent studies have indicated that network-based approaches can 

substantially contribute to our knowledge how biological systems function. In fact, molecular 

networks might be a natural extension of pathways models, a concept which have been highly 

successful in biology and medical research. For instance, pathway models helped to organize the large 

number of cancer-relevant genes in functional coherent groups [92]. In cancer research, pathway 

models were motivated by the observation that mutations within the same pathway frequtenly produce 

the same effects. For example, the control of cell cycle can not only become defective by direct 

mutation of the retinoblastoma (Rb) gene but equally by other mutation in the associated Cdk/Rb/E2F 

pathway. The pathway concept allows here for consolidation of initially unrelated observations and 

can further reveal communalities of different types of cancers. Additionally, pathway-focused analyses 

have facilitated the interpretation of mutations in their functional context.  

Despite the success of the pathway concept, it is important to note that pathways derive by no means 

naturally and that canonical pathway models seem frequently too simplistic. Notably, an inclusion of 

network-based concepts might contribute to our capability to capture molecular mechanisms. Indeed, 

it has pointed out by Friedman and Perrimon that the canonical view of signalling pathways as 

compartmentalized linear circuits is in stark contrast with the results from recent systematic screens 

[102]. A reason for the traditional simplistic picture of linear pathways might have be the dominance 

of developmental screens based on a qualitative readout. Such set-up may allow only the most 

important signalling proteins to be discovered. In contrast, large numbers of signalling modifiers have 

been identified when assays with sensitive quantitative readout were used. Thus, it can be argued that 

signalling transduction should be rather seen as quantitative information propagating through densely 

connected molecular interaction networks.  

In future, we may therefore refer to specific networks (e.g. the ‘Wnt network’), similarly as we are 

now readily using the concept of pathways (e.g. the Wnt pathway). Clearly, much has still to be 

learned about the composition and regulation of molecular networks. However, we anticipate that such 

step will constitute a crucial advancement towards a true understanding of the complexity lying within 

cells and organisms.  
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Table 1. Bioinformatic tools and on-line resources for the discovery, analysis, or visualization of 

transcription factor binding sites, regulatory motifs, ncRNAs and transcriptional networks. 

 

Resource URL Description 

TFBS/motif discovery tools   

AlignACE http://atlas.med.harvard.edu/ Identification of DNA motifs 

MEME http://meme.sdsc.edu/ Identification of DNA motifs 

   

Promoter prediction   

PPP http://bioinformatics.biol.rug.nl/websoftware/ppp/ Prediction of promoter 

PromEC http://margalit.huji.ac.il/ Database of E. coli mRNA 

promoters 

MOTIFATOR http://www.motifator.nl Mining and characterization of 

regulatory DNA motifs 

ncRNAs prediction   

 nocoRNAc http://it.inf.uni-tuebingen.de/de/nocornac.php Prediction and characterization of 

ncRNA  

   

Databases   

MicrobesOnline http://www.microbesonline.org/ Compedium of genomes, expression 

data, operon predictions 

RegPrecise http://regprecise.lbl.gov/RegPrecise/index.jsp Database of curated Regulons in 

Prokaryotic genomes 

RegTransBase http://regtransbase.lbl.gov Curated database of regulatory 

interactions and database of TFBS 

RegulonDB http://regulondb.ccg.unam.mx/ E. Coli transcriptional regulatory 

network 

 

Network analysis   

Bioconductor http://www.bioconductor.org/ Network visualization and analysis 

Cytoscape http://www.cytoscape.org/ Network visualization and analysis 

Pajek http://pajek.imfm.si/ Network visualization ananalysis 
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Figure 1. Example of a molecular network composed of regulatory protein-DNA and physical protein-

protein interactions. The network displays a model of a two-component signal-transduction cascade in 

Staphylococcus aureus. The sensor histidine kinase receptor AgrC, upon binding of a cyclic peptid, 

phosphorylates the response regulator AgrA, which in turn activates the transcription factor SarA. In 

conjunction with AgrA, SarA induces the expression of Agr virulence factors and the hla gene 

(RNAIII). Nodes represent genes or proteins in this network and are colored depending of their role: 

target genes in green, transcription factor in orange, and the two component system in blue. Red edges 

represent protein-DNA interactions, whereas green or gray edges represent protein-protein 

interactions. The crystal structures representing the different type of interactions are taken from PDB 

and are only for illustration purpose (i.e. showing equivalent structures only). 
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Figure 2: Overview of detection methods, databases and applications of PPI data.  
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Figure 3: Example of network-based analysis using UniHI. For proteins of interest such as p53, 

interaction partners can be queried and visualized. The derived networks can subsequently be filtered 

based on evidence (e.g. number of PubMed references reporting the interaction) or based on gene 

expression data. All networks can be readily inspected for enrichment in biological processes using an 

integrated tool.  

 

 

 

 

 


