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Abstract— Microarray techniques have recently
made it possible to monitor simultaneously the ac-
tivity of thousands of genes. They offer new insights
into the biology of a cell. However, the data produced
by microarrays poses several challenges to overcome.
One major task in the analysis of microarray data is
to reveal structures in the data despite its large noise
component. We used fuzzy c-means (FCM) clustering
in this study to achieve a robust analysis of gene ex-
pression time-series. We address the issues of param-
eter selection and cluster validity. Using statistical
models to simulate gene expression data, we show that
FCM can detect genes belonging to different classes.
This may open the way for the study of fine-structures
in microarray data.

I. INTRODUCTION

By enabling researchers the simultaneous measurement
of the activity of many thousands genes, microarrays have
revolutionized the study of complex genetic networks.
They have become very powerful techniques in the sys-
tematic study of gene regulation. A landmark experiment
was the study of the yeast cell cycle using microarrays
that contained every gene of the yeast genome [1] deliver-
ing an unexpected richness of patterns of gene activities
in the cell. To reveal these structures, a first step in the
data analysis is frequently the application of clustering
methods. One of the main purposes for cluster analysis
of gene expression data is to infer the function of novel
genes by grouping them with genes of well-known func-
tionality. This is based on the observation that genes
which show similar activity patterns (coexpressed genes)
are often functionally related and are controlled by the
same mechanisms of regulation (coregulated genes). The
gene clusters generated by cluster analysis often relate to
certain functions e.g. DNA replication, or protein syn-
thesis. If a novel gene of unknown function falls into such
a cluster, it is likely that this gene serves the same func-
tion as the other members of this cluster. This 'guilt-by-
association’ method makes it possible to assign functions
to a large number of novel genes by finding groups of co-
expressed genes across a microarray experiment [2].

Different cluster algorithms have been applied to the
analysis of gene expression data: k-means, SOM and hi-
erarchical clustering to name just a few [3]-[5]. They all
assign genes to clusters based on the similarity of their
activity patterns. Genes with similar activity patterns
should be grouped together, while genes with different
activation patterns should be placed in distinct clusters.
The cluster methods used so far have been restricted to a
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one-to-one mapping: one gene belongs to exactly one clus-
ter. While this principle seems reasonable in many fields
of cluster analysis, it might be too limited for the study
of microarray data. Genes can participate in different ge-
netic networks and are frequently coordinated by a variety
of regulatory mechanisms. For the analysis of microarray
data, we may therefore expect that single genes can be-
long to several clusters. Several researchers have noted
that genes were frequently highly correlated with multiple
classes and that the definition of clear boarders between
gene expression clusters seemed often arbitrary [2], [6].
This motivated us to use fuzzy c-means clustering (FCM)
as a method that can assign single objects to several clus-
ters.

A second reason for applying FCM clustering is the
large noise component in microarray data due to biolog-
ical and experimental factors. The activity of genes can
show large variations under minor changes of the exper-
imental conditions. Numerous steps in the experimental
procedure contribute to additional noise and bias. An
usual procedure to reduce the noise in microarray data is
setting a threshold for a minimum variance of the abun-
dance of a gene. Genes below this threshold are excluded
from further analysis. However, the exact value of the
threshold remains arbitrary due to the lack of an estab-
lished error model and the use of filtering as preprocessing
step may exclude interesting genes from further analysis.
FCM may be a valuable approach because of its noise
robustness.

A major problem to date for the critical assessment
of any clustering approach in the field of gene expres-
sion data analysis is the missing of any benchmark data
set for which the number of clusters is known. Differ-
ent methods frequently yield different optimal numbers
of clusters. Thus, a fair comparison between alternative
clustering methods remains difficult using solely the origi-
nal data. To achieve, nonetheless, a stringent comparison
between different clustering algorithms, we introduce sev-
eral statistical models for gene expression that are based
on original data and use them for the generation of gene
expression data with a controlled number of clusters. Ad-
ditionally, by analyzing the performance of the clustering
methods for data derived from different models, we gain
insights in the applicability and limits of these clustering
approaches.

In the next section we give first a brief introduction into
the basic biology and the techniques used in a microarray
experiment. This may facilitate the understanding of the
data structure and the challenges posed to any clustering
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Fig. 1. Periodical clusters selected by Cho et al.

of microarray data. We describe further the data sets
and the methods we used in this study. In the results
section, we first focus on the parameter selection for FCM
clustering. We then compare the noise robustness of FCM
to hard k-means clustering. On model-based generated
data sets, we show that FCM correctly assigns single genes
to multiple clusters. Finally we discuss the results and
describe future directions of our research.

II. GENE EXPRESSION DATA
A. Biological background

Genes are the carrier of the information necessary for
building and controlling of a cell as the basic unit of life.
They are stored as DNA usually in the cell nucleus. The
functions in a cell, however, are mainly performed by pro-
teins. Both genes and proteins are linked together by
RNA. RNAs are temporary copies of genes and consti-
tute the intermediate step between the genes and their
corresponding proteins. The process of the generation of
the RNA and proteins is called the expression of a gene or
gene expression. The amount of expressed RNA of a par-
ticular gene is generally an indicator how active this gene
is. Highly active genes express more RNA than genes of
low activity. Since every gene produces its own specific
RNA, measuring the abundance of the RNA correspond-
ing to each gene gives us an index for the activity of the
genes. Microarray techniques enable us to monitor si-
multaneously the amount of RNA for thousands of genes.
This is done by reverse transcription of RNA into cDNA
(copied DNA). The generated cDNA is labelled by a dye
and hybridized on gene specific probes on a slide. By
measuring the amount of fluorescence evoked by a laser,
the researcher can infer the abundance of the RNA for
the screened genes in the sample. This is done for every
sample in the experiment. The resulting data from the
experiment is usually stored in a matrix form called the
gene expression matriz G. Columns correspond to single
samples and rows show the measured expression values
for each genes used in the experiment. The collective ex-
pression values for a gene across samples constitute its
gene expression vector.

B. Gene expression time series

We analyze in this study gene expression data derived
from a time-series experiment of the yeast cell cycle [6].
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Studying the yeast cell cycle is not only of biological im-
portance, but also of medical interest. Many basic ge-
netic mechanisms in yeast are similar in humans. Since
the development of cancer is often linked to malfunctions
in the cell cycle control, the analysis of the regulation
mechanisms in yeast may reveal valuable information for
medical researchers.

In the experiment by Cho et al., the expression values
for (Saccharomyces cerevisiae) genes were recorded over
a period of two cell cycles (160 min). The original data
set consists of expression values for over 6000 genes taken
over 17 evenly spread time points. In this study, however,
we used a much smaller subset, since we seek to evalu-
ate the performance of FCM clustering. For this task, we
need prior knowledge of the data, especially the number
of clusters we can expect. We studied therefore a set of
genes that was selected by Cho et al. They selected by
visual inspection 384 genes and categorized them into 5
classes based on the exact time points when their expres-
sion levels peaked. These genes were labelled according
to the cell cycle phases in which they peak (early Gy, late
G1, S, Go, M.) As can been seen in figure 1 , some classes
(e.g. late G; and S) display an overlap, while the S-class
for example shows a large heterogeneity and can possibly
be divided into two subclasses. It was further noted by
Cho et al. that genes show frequently expression peaks in
different classes. To achieve a more stringent assessment
of the clustering performance, we introduce three statis-
tical models of gene expression data for which we can
control the structure and especially the number of clus-
ters in the data. All these sets were based on the data set
by Cho et al.

C. Model-based generation of gene expression data

The first model for gene expression data was based on
a multi-variant Gaussian distribution. Each of the classes
in this data set has the same mean vector, the same co-
variance matrix and the same number of genes as the
corresponding class in the original data set by Cho et
al. The second model-based data set was generated by
random permutation of the expression values within the
original class for each time point. This procedure yields
classes that conserve the mean vector and the number of
genes of the original classes, but not the covariance ma-
trix. We also create a data set consisting of hyperspherical
multi-variant Gaussian distributions. The covariance ma-



trices of the classes were constructed by multiplying the
identity matrix with the average value of the diagonal el-
ements in the original covariance matrix. Note that the
first and the second model-based data set are based on
hyperellipsoidal distribution. For the first data set, the
axes of the hyperellipsoids are determined by the covari-
ance of original classes, while for the second data set the
axes parallel to the coordinate axes. Finally, baseline dis-
tributions were generated by random permutation of the
gene expression values for each gene independently. Any
correlation between genes in these data sets exist merely
by chance.

III. METHODS FOR DATA ANALYSIS
A. Preprocessing and normalization

The data was logs-transformed to achieve a symmetry
between negative and positive fold changes and normal-
ized to obtain a mean expression value of zero and stan-
dard deviation of expression values of one for each gene.
This ensures that genes which share the same expression
pattern have similar gene expression vectors.

B. Fuzzy c-means clustering

Clustering analysis seeks to achieve partitions of the
data based on the similarity of the objects in the data. A
partition divides the data into several clusters (or classes)
and can be represented by a partition matrix U that con-
tains the membership values p;; of each object 7 for each
cluster j.

For hard clustering, which is based on classical set the-
ory, clusters are mutually exclusive. This leads to the so
called hard partitioning of the space. It is defined as

Hij € {0,1} Vi,j
Uj € RON | X2 pig =1V
0< YN iy <N Vi

th =

where c¢ is the number of clusters and N the number of
data objects.

Fuzzy clustering is based on the concept of fuzzy parti-
tioning of the data space. In contrast to hard clustering, a
data object can be member of several fuzzy clusters. This
results in a fuzzy partitioned space that takes the form of

Hij € [0, 1] Vi,j
Uyj € RON | X pig =1V
O<Z;V:1,uij <NVi

My =

Note that the fuzzy partitioned space M. fully contains
the hard partitioned space My, as a subspace.

Many different algorithms for cluster analysis aim to
minimize an objective function. An important objective
function for fuzzy clustering is the c-means functional .J,,
weighting the sum of squared errors within the clusters.
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In case of gene expression data, it can be written as

c N
Tn(G, U, P) =" (i)™ lg; — pilla

i=1 j=1

where g; is the expression vector of the gene i, U is the
fuzzy partition matrix, p; is the prototype (or cluster cen-
ter) for cluster j, m the fuzzification parameter (with
m > 1) and a distance norm ||x||a = VxAx takes the
form of a squared inner product. Fuzzy c-means (FCM)
clustering is the most common algorithm for solving this
non-linear optimization problem. It is based on the first
order conditions for a minimum of J,,:

1
Ukl = P Vk,l (1)
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> i, llsi—pilla
N me.
e = Zj?\;(lﬂw) gj vk 2)
Zj:1(ﬂkj)m

A Picard iteration alternating between step (1) and (2)
adjusts p;; and p; until the change in J,, falls below a
threshold € or a maximal number of iterations ¢ is reached.
In this study, we chose ¢ = 0.001 and ¢ = 100. Note that
p; is the weighted mean of cluster j. The fuzzification
parameter m controls the fuzziness of the partitioning
i.e. the degree to which the membership of a gene is
distributed among the clusters. For m — 1, the fuzzy
clustering turns into hard clustering of the data. The
prototypes p; are then simply the means of the clusters j.
For m — oo, the partition approaches maximal fuzziness.
A gene i is assigned to all clusters equally. We will ana-
lyze this behavior further and give recommendations for
the choice of parameter m. Through setting the matrix
A equal to the identity matrix, we selected the standard
Fuclidean norm as a distance. This choice has the advan-
tage that no further parameters of matrix A have to be
determined in our cluster analysis, however, we will see
that it also leads to some drawbacks.

C. Cluster validity

Since we usually have little information about the data
structure in advance, a crucial step in the cluster anal-
ysis is selection of the number of clusters. Finding the
‘correct’ number of clusters addresses the issue of cluster
validity. This has turned out to be a rather difficult prob-
lem, as it depends on the definition of a cluster. Without
prior information, a common method is the comparison
of partitions resulting from different numbers of clusters.
For assessing the validity of the partitions, several clus-
ter validity functionals f : U — R have been introduced.
These functionals should reach an optimum if the correct
number of clusters is chosen. In this study we used the
following validity functionals:

1. Partition coefficient F: Introduced by Bezdek [7], the



partition coefficient F is defined as

c,N
FU)= Y 12/N

k,i=1

It is maximal if the partition is hard and reaches a mini-
mum for U = [1/¢] when every object is equally assigned
to every cluster.

2. Normalized partition coefficient F : Tt is well-known
that the partition coefficient tends to decrease monotoni-
cally with increasing n. To reduce this tendency we define
a normalized partition coefficient

F=F—F,

where Fj is the partition coefficient derived from the ran-
domized data set.

3. Xie-Beni index S: Xie and Beni proposed an cluster
validity index

N
D e e (i) ? g — pall?
; _ 2
n min(||px — p1l|?)
k£l

S:

that aims to quantify the ratio of the total variation
within clusters and the separation of clusters. Choosing
the correct number of clusters should minimize this index.

Using a fixed value for the fuzzification parameter m
in the clustering validation process may give a wrong
picture, since it is shown that the choice of m has a
strong influence on the cluster validity functional pre-
sented here [8]. We therefore evaluate the cluster valid-
ity functionals by using a exhaustive grid-search method,
varying both parameters ¢ and m.

IV. RESULTS
A. Determination of the FCM parameters

We performed FCM clustering for all data sets (i.e. the
original data set selected by Cho et al. and the model-
based data sets) in the parameter range of 2 < ¢ < 10
and 1.05 < m < 3.55 and evaluated the performance of
the cluster validity indices. The fuzzification parameter m
turned out to be an important parameter for the cluster
analysis. For the randomized data set, FCM clustering
formed clusters only if m was chosen smaller than 1.15.
Higher values of m led to uniform membership values in
the partition matrix. This can be regarded as an ad-
vantage of FCM over hard clustering, which always forms
clusters independently of the existence of any structure in
the data. An appropriate choice for a lower threshold for
m can therefore be set, if no cluster artifacts are formed
in randomized data. An upper threshold for m is reached
if FCM does not indicate any cluster in the original data.
This threshold depends mainly on the compactness of the
clusters. Compact clusters like the late G1-cluster 'melt’
for higher m than less compact clusters like G5. Interest-
ingly, cluster analysis of the model-based data sets showed
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Fig. 2. Dependence of normalized partition coefficient F' on
FCM parameter ¢ and m for the original data set by Cho et al.
Light gray values indicate high F'; dark gray values indicate
low F. For visualization purpose we scaled F, so that the
maximum values for F' for any fixed m are the same.

that hyperspherical distributions are more stable for in-
creasing m than hyperellipsoidal distributions. This may
be expected since FCM clustering with Euclidean norm
favors spherical clusters. Of all three compared validity
indices only the normalized partition coefficient F' indi-
cated five clusters in the data for a specific setting of m.
The unmodified partition coefficient F' reached its max-
imum for ¢ = 4 for values of m < 1.35, while for larger
m F showed a monotonic decrease in c¢. Xie-Beni’s in-
dex S reached an minimum for ¢ = 4 over the range of
1.05 < m < 2.55. For larger values of m, ¢ = 2 was
indicated by S as the appropriate number of clusters.
The main reason for S not pointing out five clusters, is
strong dependence of the minimum distance of all clus-
ter pairs. Analysis showed that the distance between the
prototypes for the late G- and the S-cluster was much
smaller compared to all other pair distances. Splitting
these two clusters lead to a strong increase of S as only
the minimum distance between cluster prototypes is used
by S to evaluate the separation between clusters. Only
the normalized partition coefficient F indicated ¢ = 5 in
case of m = 1.25. Interestingly, the value of F for ¢ = 5
and m = 1.25 was also its global minimum. Higher values
of m lead to smaller optimal number of clusters indicated
by F . This behavior is shown in figure 2. For increasing
m, F reached its maximal value for smaller number of
clusters.

B. Noise robustness

For the analysis of gene expression data, it is crucial
that the applied clustering methods show a robust per-
formance in the presence of a high level of noise. We
compared the performance of fuzzy clustering with hard
clustering by using two models to simulate noise. In the
first model, uniformly distributed noise was added to the
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Fig. 3. Clustering performance dependent on percentage of

added noise for the original data by Cho et al.: The contin-
uous line displays the average and the standard deviation of
corrected Rand indices achieved by k-means clustering, while
the dash line corresponds to the average and standard devi-
ation for FCM clustering. A noise component of 0.1 means
that 10% of the each gene expression vectors consists of added
uniform noise.

expression values of each gene. This intends to reflect
the generic background noise in a microarray experiments.
The second model contained a random selection of a cho-
sen percentage of gene expression vectors which were re-
placed by uniform noise. This approach helps to assess
the robustness of cluster analysis against data outliers
and the sensitivity of finding patterns in a noisy envi-
ronment. Both models are limited, since they assume
a specific form of noise distribution. However, since no
noise model has been established so far for microarray
data, they may constitute a first step towards the assess-
ment of the robustness of clustering microarray data. To
assess the performance of the two clustering methods, we
used the corrected Rand index [9]. This index compares
two partitions and has a maximal value of 1 if the parti-
tions are the same. For random partitioning the corrected
Rand index yields 0. In short, it assesses the difference
between two partitions.

In the first set of experiments, we calculated the cor-
rected Rand indices comparing the classes of the original
data set with the partitions achieved by the clustering
methods when noise is added to the data. Uniform ran-
dom noise was added stepwise to every gene expression
vector up to a level of 50%. For every noise level, 10 runs
with random initiation were performed for both clustering
methods. The fuzzification parameter m was chosen to be
1.1, since a better performance of FCM clustering was ob-
served for small values of m in the case of a large noise
component. The number of clusters was set to 5 for both
methods. For calculation of the Rand index, it is neces-
sary to convert the fuzzy partition to a hard partition.
This was achieved by assigning genes to the cluster with

0-7803-7280-8/02/$10.00 ©2002 | EEE

0.9

0.85} 1

0.8}

0.757

0.7}

0.65}

0.6}

Corrected Rand index

0.55¢

05 L L L L
0 0.1 0.2 0.3 0.4 0.5

Replacement factor

Fig. 4. Detection of clusters in a noisy environment based on
the original data set by Cho et al.: Stability of partitioning
was assessed by replacing genes by uniform noise. A replace-
ment factor of 0.1 corresponds to a replacement of 10% of the
genes by noise. The continuous line displays performance of
hard clustering; the dash line displays performance for fuzzy
clustering.

the largest membership value. For the original data set
by Cho et al., k-means clustering outperformed fuzzy c-
means clustering for a percentage of added uniform noise
up to 40% (see figure 3). Two points, however, are impor-
tant to note. First, k-means clustering produced generally
different partitions in repeated runs and thus showing a
large variation in the Rand index. This can be regarded
as a drawback of k-means clustering, as usually no ex-
ternal criterion exists to select the specific partition from
different runs. FCM yielded very stable results as it con-
verges to very similar partitions in different runs even
for a large noise component. Second, the performance
of k-means is more affected by increased noise and de-
creases strongly for high levels of noise. FCM achieves
similar Rand index for different noise levels and outper-
forms k-means clustering for noise levels over 40%. To ex-
plain why FCM clustering performs worse than k-means
in case of low levels of noise we analyzed the clustering
of the model-based data sets. The performances of both
clustering methods applied to the model-based data with
conserved covariance structures were similar to the results
for the original data. Both methods, however, improved
strongly if model-based data with diagonal covariance was
used. K-means still performed better over a wide range
of noise levels, while FCM resulted in a more stable par-
titioning of the data. This is contrasted by the results for
the modelled data based hyperspherical normal distribu-
tions. FCM showed a better and more stable performance
than k-means. This indicates that FCM with Euclidean
distance is rather sensitive to the shape of clusters.

In the next set of experiments we compared the par-
tition achieved for the data sets without added noise to
the partitions for data with added noise. This may give
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Fig. 5. Average membership function value of model-based
generated gene vectors in dependence of the mixture of two
clusters.

a fairer comparison of the two clustering methods since it
assesses the stability based on an internal criterion. We
replaced stepwise a fraction of randomly selected genes
by uniform distributed noise (see figure 4). For all data
sets FCM showed more stability. The difference in per-
formance becomes marginal if more than a third of the
genes are replaced by noise.

C. Multiple parents cluster

In the final part of this study, we assessed the capability
of FCM clustering to detect genes that may be members
of two clusters simultaneously. Since the study of genome-
wide expression patterns is still in its infancy and to date
no gene expression data sets exists for which the underly-
ing regulatory network structure is fully known, we mod-
eled genes belonging to two clusters based on multivariate
normal distributions. The centers and the covariance ma-
trices of these modeled distributions were the weighted
sums of the prototypes and covariance matrices of exist-
ing clusters that were randomly selected. The contribu-
tion of each existing cluster to the simulated gene expres-
sion vectors were controlled by a weighting factor. In this
experiment, we generated 40 genes for different settings
of the weighting factor and recorded the results of FCM
clustering for 10 independent runs for each setting. The
membership values of the modeled gene expression vec-
tors for the clusters they were derived from were recorded
and are displayed in figure 5. These membership values
correspond well with the mixing factor which determines
the contribution of each mother cluster. The analysis of
membership values may therefore have the potential to
reveal multiple regulations of genes in future studies.

V. CONCLUSIONS

The field of bioinformatics has recently been attract-
ing more and more attention. A vast variety of different
algorithms has been introduced to this new field. How-

0-7803-7280-8/02/$10.00 ©2002 | EEE

ever, fuzzy methods have not been able to establish them-
selves as tools for data analysis in bioinformatics. We have
shown in this work that fuzzy concepts can be regarded
as a promising and a powerful representation of complex
biological data structures. We analyzed here mainly the
parameter selection and the robustness of fuzzy clustering
against background noise and outliers. This analysis is a
first approach towards exploiting the robustness of fuzzy
clustering to gain new insights in gene expression data.
Although several cluster methods have recently been ap-
plied to gene expression data, the assessment of the ro-
bustness of cluster methods has been neglected, mainly as
researchers have concentrated so far on a few dominated
patterns in gene expression data. Robust cluster analy-
sis, however, is of crucial importance to discover potential
important subtle patterns that are difficult to distinguish
from background noise. Many topics of research remain to
be resolved. To name just a few: adjustment of clustering
parameters to the data, choosing an appropriate similar-
ity measure, finding suitable distance norms, statistical
significance of clusters, biological validation of fuzzy clus-
ters.

VI. ACKNOWLEDGEMENTS

We have applied the fuzzy clustering approach to sev-
eral complete gene expression data sets. The discussion
of the underlying biology, however, is beyond the scope
of this study that focusses on the technical issues of fuzzy
clustering applied to microarray data. The main findings
of the clustering analysis of the complete data sets will
therefore be published elsewhere [10].
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