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Introduction
Successful cancer therapy demands accurate diagnosis of

the tumour type. Conventionally, the diagnosis of cancer

has been based on the assessment of histological and

pathological features of tissue biopsies from the patient.

This method, however, depends strongly on the expertise

and training of the pathologist examining the tissue

specimen, so the final diagnosis may be subjective.

Alternative classification procedures are, therefore, highly

desirable.

The recently introduced cDNA and oligonucleotide

microarrays might possibly offer such alternatives.

Simultaneously measuring the expression of thousands of

genes, microarrays can give detailed pictures of the

molecular state of cells. Recently, microarray data have been

used for outcome prediction of cancer treatments (Pomeroy

et al 2002; Shipp et al 2002; van’t Veer et al 2002). Although

the studies showed the ability to predict disease outcome

based on gene expression data, they also revealed a limited

accuracy in the derived predictions. This may not be

surprising, since microarrays are restricted to measuring

RNA abundances. In fact, disease prognosis is a challenging

task, as many factors have to be taken into account. For

example, the genetic background, environment, age, the

physical condition of the patient and the intensity and

duration of therapy have to be considered, as well as the

type, location and stage of the tumour. To exploit the full

power of microarray techniques for medical applications,

it is therefore necessary to integrate the data from

microarrays with various clinical parameters.

We propose in this study the integration of microarray

data and clinical variables using a modular hierarchical

model. Separate modules are constructed for microarray and

clinical data. The microarray predictor module was formed

by a neural network classifier. For the clinical predictor, we

converted an existing clinical prognostic model to a

Bayesian classifier. The predictions of the two independent

modules were combined and fused to a single prediction.

Combination of classifiers has recently attracted

increased attention. Reviews of this growing area of research

can be found in Kittler (1998) and Kittler et al (1998).

Several models of combined classifiers have been proposed

for the analysis of DNA and protein sequences (Zhang et al

1992; Xu et al 1996). To our knowledge, however, no other

study has focused on the combination of clinical and

microarray-based classifiers.

Data
Diffuse large B-cell lymphoma (DLBCL) is the most

common lymphoid malignancy in adults. The treatment of

DLBCL usually begins with multi-agent chemotherapy and,

in the case of a relapse, is often followed up by bone marrow
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transplantation. The clinical course of chemotherapy for

DLBCL is widely variable. Although most of the patients

initially respond well to the treatment, the majority finally

succumb to the disease. Only 40% of patients achieve a

durable remission of the cancer.

Using Affymetrix chip technology, Shipp and co-

workers profiled 58 DLBCL tissue samples from patients

with a known chemotherapy outcome (‘cured’ or ‘fatal’)

and were able to construct predictors for the outcome based

on selected sets of differentially expressed genes (Shipp et

al 2002). Three supervised learning methods were applied:

a weighted voting algorithm (Golub et al 1999), support

vector machines (SVMs) and k-nearest neighbour (knn)

classifiers. An accuracy of 75.9% was achieved by the

weighted voting algorithm, 77.6% by SVMs and 70.7% by

knn classifiers. The publicly available dataset includes

further clinical information in the form of the International

Prediction Index (IPI) for 56 patients.

Methods
We first introduce the definition of mutual information, since

it gives an indication about the ability to improve prediction

by the combining of two separate prognostic models. We

then describe the neural network classifier for classification

of the treatment outcome based on microarray data and the

use of IPI as the Bayesian classifier. Both classifiers are

used as prediction modules in our modular hierarchical

model.

Mutual information
The dependence of two random variables x and y with

probability distributions P(x) and Q(y) can be measured by

the ‘mutual information’ I. It is defined as the relative

entropy between the joint distribution R(x,y) and the product

distribution P(x)Q(y):

I(x,y) = H(P) + H(Q) – H(R) = H(P) – H(P|Q)

= Σ
x,y

R(x,y) log
2

(R(x,y) / [P(x)Q(y)]) (1)

where H(P) is the entropy of distribution P, H(Q) is the

entropy of Q, H(R) is the entropy of R and H(P|Q) is the

entropy of P given Q, respectively. The entropy H is here

defined as Shannon entropy ie H(P) = Σ
x
P(x) log

2
 (P(x)).

The mutual information I indicates the reduction of

uncertainty about one variable given the other. If the

variables are statistically independent, the joint probability

R(x,y) is equal to the product probability P(x)Q(y). In this

case, the mutual information is minimal (I = 0). This also

holds in the reverse direction; if the mutual information is

zero, the variables are statistically independent (Cover and

Thomas 1991).

IPI as Bayesian classifier
The hitherto standard model for the outcome prognosis for

DLBCL, the International Prediction Index (IPI), uses

clinical data to derive its prediction (Shipp et al 1993). The

IPI is based on a clinical study of patients, who were treated

using a combination therapy. A step-down regression was

used to select several risk factors that remained

independently significant for overall survival: age, tumour

stage, number of extranodal sites, performance status and

serum lactate dehydrogenase concentration (LDH).

Assessing these risk factors, patients can be assigned to four

different risk groups with different five-year survival rates:

73% for ‘low’ risk group with zero to one risk factor present;

51% for ‘low–intermediate’ risk group with two risk factors

present; 42% for ‘intermediate–high’ risk group with three

risk factors present; and 26% for ‘high’ risk group with four

or all risk factors present. The IPI is currently used to stratify

patients for intensified therapy.

To use the IPI as a predictor, we have to formulate the

decision rule for the classification procedure. Given the

IPI value as a single feature and the two classes ‘cured’

and ‘fatal’, we state the conditional probabilities

P(class = i | IPI = j) of the class i (eg ‘cured’) given the IPI

risk group j (eg ‘low’) based on the observed samples if we

want to classify a new sample. Using these class

probabilities, we can apply the Bayesian decision rule:

Decide for class ‘cured’

if P(‘cured’ | IPI) > P(‘fatal’ | IPI)

otherwise decide for class ‘fatal’.

This rule simply means that we classify an unseen sample

based on the majority of observed samples in the

corresponding IPI category. Using this rule, we minimise

the overall Bayesian risk (giving equal weight to all

misclassifications) and convert the IPI to a Bayesian

classifier.

Evolving fuzzy neural networks
For the microarray-based predictor, we used evolving fuzzy

neural network (EFuNN) classifiers recently introduced for

adaptive supervised learning (Kasabov 2001). EFuNNs use

a five-layer structure where nodes and connections are

created as data examples are presented (Figure 1). The first

layer serves for fuzzification of the input, so that the

activation values in the second layer are the fuzzy
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representation of the input. Nodes in the third layer represent

clusters of examples in the training set. By adding new nodes

or adjusting existing nodes, homogeneous clusters can be

formed; ie all samples in a cluster belong to one class. This

is implemented in the EFuNN algorithm by unsupervised

learning of the connection between the second and third

layer, and supervised learning of the connections between

the third and fourth layer, respectively.

Examples will be classified according to their distance

from the nearest rule nodes. The fourth layer of neurons

performs defuzzification, so that the fifth layer represents

the real values for the output variables.

Results
After constructing the microarray-based EFuNN classifier,

we tested the hypothesis that clinical and microarray data

contain independent information by applying set and

information theory. Both types of data are then combined

in a modular hierarchical model.

Training of the microarray-based classifier
To construct a microarray-based classifier, we selected and

ordered genes according to their signal-to-noise ratio, as

defined by:

S = (X
1
– X

2
) / (σ

1
+ σ

2
) (2)

with X
1,2

 and σ
1,2 

as the mean and the standard deviation of

the expression values of a gene in class 1 (‘cured’) or 2

(‘fatal’). The training of EFuNNs was performed as follows:

for different EFuNN parameter settings, we started with a

low number (n = 3) of genes as network input; gradually

increasing the number of genes generally led to an increase

in classification accuracy; we continued to add genes to the

network input until a maximum accuracy was achieved;

further increasing the number of genes yielded a decrease

in accuracy, as additional genes contributed noise to the

classification process.

The classification performance was recorded applying

the same leave-one-out method as used by Shipp and

colleagues (Shipp et al 2002). For the 56 samples for which

the IPI classification was present, our best EFuNN classifier

achieved a maximum accuracy of 78.5% for 17 genes as

input. The clinical prognostic model described above

achieved an accuracy of 73.2% on the same dataset.

Complementary information of two
classifiers
An improvement of the outcome prediction by combining

the two classifiers constructed can only be achieved if their

predictions are at least partially complementary. Basic set

theory showed that the predictions agree in only 37 of 56

cases (Figure 2). This indicates that the predictions are

independent.

The independence of two classifiers can also be assessed

by examining the mutual information. To use equation (1),

we first calculate the probabilities P, Q and R, with variable x

as the EFuNN prediction and y as the IPI-based predictions.

The variables x and y are defined here as 1 if the classifier

predicts ‘cured’ and 0 if the classifier predicts ‘fatal’,

respectively. For the EFuNN classifier, this yielded

P(x = 1) = 0.55 and P(x = 0) = 0.45. For the IPI-based

classifier, this yielded Q(y = 1) = 0.66 and Q(y = 0) = 0.34.

The joint probabilities were as follows: R(x =1, y =1)= 0.42,

R(x = 1, y = 0) = 0.13, R(x = 0, y = 1) = 0.23 and R(x = 0,

y = 0) = 0.21.

 

Figure 1 Outline of a simplified five-layered EFuNN (evolving fuzzy neural
network) structure.

Figure 2 Venn diagram of overlapping sets of samples correctly predicted by
the microarray-based predictor C1 and by the IPI-based clinical predictor C2. The
predictions are complementary in 19 of 56 cases: 44 samples are correctly
classified by the microarray-based predictor, while 41 samples are correctly
classified by the clinical predictor. Altogether, 33 samples are classified correctly
by both predictors. Of the remaining samples, 11 are classified correctly only by
the microarray-based predictor (and not by the clinical predictor) and 8 are
classified correctly only by the clinical predictor (and not by the microarray-
based predictor). Overall, 52 samples are predicted correctly by at least one
predictor, setting an upper threshold (92.9%) for the accuracy of the combined
model.
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Based on these calculated probabilities, and using

equation (1), a mutual information of 0.05 was derived for

the predictions by the EFuNN and IPI-based classifiers.

Since the mutual information is almost zero, the microarray-

and IPI-based prognostic models can be considered as

statistically independent classifiers (see Mutual Information

section). This is a rather surprising result, as several risk

factors are considered surrogates of underlying molecular

mechanisms (Shipp et al 1993) and should therefore be

highly correlated with gene expression in the tumour.

Hierarchical modular system
To exploit the complementary nature of the two prognostic

models, we combined both predictors in a hierarchical

modular prognostic model (Figure 3). It consists of an

EFuNN and an IPI predictor in the first layer. For each

sample, these modules predict independently whether the

sample belongs to either tissue class ‘cured’ or tissue class

‘fatal’. Each of these predictions has a defined strength

representing the confidence of the predictor in its decision.

In the case of EFuNNs, the prediction strengths derive

from the activation values of the rule nodes. The nearer a

sample lies to a node belonging to a class, the higher is the

activation value of this node and thus the prediction strength

for the class. In brief, the EFuNN prediction is based on the

location of the sample in the gene space.

The strength of each IPI prediction is the corresponding

conditional class probability and represents the homogeneity

of the IPI category. As in the case of the EFuNN module,

the prediction strengths for both classes will propagate to

the second layer.

The ‘class unit layer’ combines the prediction of the two

modules and consists of units for the classes ‘cured’ and

‘fatal’. Predictions of the EFuNN module were weighted

by a factor β
1,
 predictions of the IPI module were weighted

by a factor (1 – β
1
). The factor β

1
 indicates how much we

rely, for the class ‘cured’, on the predictions of the EFuNN

module compared to the IPI module. The weighting for the

class unit ‘fatal’ is performed independently (β
2
), since

microarray-based and IPI-based predictor modules may

have different accuracies for each class.

Outputs of the class units were weighted with factor α
and (1– α) before being fed into the decision unit to adjust

for a possible bias towards one class. The outcome prediction

for the sample is produced in the ‘decision layer’ by

comparing the outputs of the class units.

Different methods can be used for the optimisation of

the model parameters α, β
1
 and β

2
 such as error

backpropagation and expectation-maximisation with

constraints. For this study, however, it seems more

informative to achieve a global picture of the dependence

of the performance on the weighting parameter. We therefore

present here the results using an exhaustive grid search (for

α, β
1
, β

2
 in [0,1]) over all possible combinations of the

parameters within a leave-one-out procedure. The training

of the microarray-based EFuNN predictor is performed in

parallel. The IPI-based Bayesian classifier is static in this

study, since it derives from a previously determined

prognostic model.

The maximal accuracy of the hierarchical modular model

was 87.5%, which is significantly higher than the accuracies

achieved by the single predictor modules. The dependence

of the accuracy on model parameters is visualised in

Figure 4. If we are weighting the outputs of the class units

equally, the accuracy reaches a maximum for β
1
, β

2
≈ 0.7.

This means, to improve the accuracy by combination, more

weight has to be given to the microarray-based predictions.

However, it also demonstrates that the incorporation of

clinical information helps to improve the accuracy.

Areas of expertise
Regions in the domain space for which a classifier achieves

a very high accuracy are frequently called ‘areas of

expertise’. For an optimal combination of classifiers, it is

Figure 3 Three-layered hierarchical model for combination of clinical and
microarray-based predictors: the first layer (‘predictor module layer’) consists of
independently trained predictor modules; the second layer (‘class unit layer’)
integrates the weighted predictions of both predictors for classes A and B
(‘cured’ and ‘fatal’); the third layer (‘decision layer’) produces the final prediction
based on the weighted sum of the outputs of class units.
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essential to find these areas for each of the classifiers under

consideration.

Stratification of the samples into clinical subgroups

according to their IPI value demonstrated that the two

predictor modules differed in their areas of expertise. The

IPI risk groups ‘low’, ‘low–intermediate’ and ‘intermediate–

high’ were weighted towards the microarray-based predictor,

while the ‘high’ risk group was weighted towards the clinical

predictor for the final outcome prediction of the combined

model. Interestingly, the SVM used by Shipp et al (2002),

as well as our neural network method, classified the samples

with IPI ‘high’ incorrectly. This indicates that the molecular

basis of DLBCL for this group of patients might differ from

that of patients in other IPI risk groups.

Discussion and conclusions
The outcome of complex diseases, such as cancer, is likely

to depend on various factors. For accurate outcome

prediction, information about the patient as well as the

molecular state of the disease may have to be considered.

Microarrays have offered comprehensive new views of

many diseases; however, they are limited to detecting

changes in the abundance of mRNAs in cells. Almost

certainly, medical decision support systems will require

wider approaches incorporating different types of patient

and disease-related information.

Our study demonstrates that the integration of

microarray data with previously established clinical

parameters can considerably improve disease outcome

prediction. Calculating the mutual information as a measure

of statistical independence, we could show that the EFuNN

predictor trained on microarray data is statistically

independent from the IPI predictor. This independence

enabled us to improve overall prediction accuracy by a

combined modular prediction system, which can be regarded

as a first step towards full integration of microarray data

into clinical decision systems.

The modular system is not restricted to the data analysed

here, but is generic. The inclusion of other types of clinical

and molecular data as well as predictor modules is possible

and may be favourable for individualising patient care.
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