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Abstract

Genomic DNA sequences contain a wealth of  information about the bendability and curvature of the DNA

molecule. For example, the well-known 10-11 bp periodicities within genomes can be attributed to supercoiled

structures or wrapping around nucleosomes. Such periodic signals have previously been examined mainly based on

mono- or dinucleotide correlations. In this study, we generalize this approach and analyze correlation functions of

longer motif s such as tetramers or poly(A) sequences. Periodically placed motifs may indicate regular protein

binding or curvature signals. We detected various periodic signals e. g. strong 10-11 bp oscil lations of  periodically

placed poly(A), poly(T) or poly(W) stretches. These observations lead to a new view on the intensively studied

10-11 bp periodicities.
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Introduction

Periodicities in DNA sequences have intensively been studied in the past decades. Already in 1980 Trifonov and

Sussman found indications that 10-11 base-pair (bp) periodicities ref lect DNA structure in chromatin. Zhurkin,

1981, pointed to the fact that -helices in proteins induce additionally DNA periodicities with a similar period (see

Weiss and Herzel 1998 for a detailed discussion). These protein induced oscil lations represent, however, only a

minor fraction of  the signal, since 10-11 bp periodicities have also been found in the third position of reading

frames [Herzel et al., 1998] and in non-coding DNA [Holste et al., 2003; Dlakic et al., 2004]. Using spectral

analysis Widom, 1996, studied periodicities in eukaryotic genomes and found particularly strong signals in the

DNA sequence of C. elegans. Interestingly, prokaryotic genomes also exhibit pronounced 10-11 bp periodicities

associated with DNA supercoiling [Herzel et al., 1998; Tomita et al., 1999; Worning et al., 2000]. With the aid of

nonlinear curve-fitting [Herzel et al., 1999] the specif ic periods of more than 100 genomes have been calculated
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[Schieg and Herzel, 2004]. It turned out that genomes of archaea frequently display periods of around 10 bp

associated with positive supercoiling [Herzel et al., 1998] whereas eubacteria exhibit periods between 10.7 and 11.5

bp reflecting negative supercoiling. Such observed 10-11 bp periodicities are commonly interpreted as bendability

signals which support supercoiling or the wrapping of the DNA molecule around eukaryal or archaeal nucleosomes.

This view is supported by multiple alignment of nucleosomal sequences [Satchwell et al., 1986; Ioshikkes et al.,

1996], by artificial nucleosome positioning sequences [Shrader and Crothers, 1989] and by selecting sequences with

high affinities for histone binding [Thastrom et al., 1999]. However, it should be noted that the observed

periodicities are extremely weak. Typical amplitudes of correlation functions are in the order of 0.001, i. e. there is

just a minor excess of appropriately spaced (di)nucleotides [Schieg and Herzel, 2004]. Only averaging over large

genomic regions of about 100 kbp leads to detectable periodicities. Thus, the contribution of 10-11 bp periodicities

to nucleosome positioning in vivo seems to be limited.

In this paper we explore the possibility that DNA periodicities reflect not only dinucleotide signals. As DNA

curvature is governed by dinucleotides [Calladine and Drew 1987; Merino and Garciarrubio 2000], previous studies

have been focused predominantly on the analysis of correlations or spectra of dinucleotides. In contrast, we analyse

here longer oligonucleotides such as tetramers in order to detect periodically placed DNA motifs. DNA binding

proteins might act as architectural elements to specify an optimal three-dimensional structure [Travers, 1990]. Even

though most transcription factor binding sites are longer than 4 nucleotides, our search for tetramer signals might

detect core motifs such as TATA or CAAT. We start with a systematic analysis of all 256 tetramers. It turns out that

some motifs are indeed periodically placed along the DNA sequence with a variety of periods. The 10-11 bp

periodicities are dominated by poly(A) and poly(T) stretches. This observation can give us a new perspective in the

intensively studied field of DNA periodicities.

Methods

Correlation functions measure the excess of certain pairs of patterns at a distance of k base pairs. For the calculation

of X-X autocorrelations, we count in the entire DNA sequence the number Nx-x (k) of pairs of two identical

patterns X and X separated by k base pairs. Here, X stands for a pattern such as X =’AATT’. Altogether there are

N –  k –  l + 1 pairs in a sequence of length N, where l is the length of pattern. For example, the pattern AATT has

the pattern length of 4 and thus the total number of pairs of this pattern (or any pattern of length 4) is N –  k –  3 in

a given sequence of length N. Consequently, the probability to find the pair X -X at the distance k can be estimated

as:

PX-X = NX-X (k) / (N –  k –  l + 1)

The probability of a single pattern X is denoted by PX. It is given by:

PX (k) = NX(k) / (N –  k –  l + 1)

In the above formula, NX is the number of copies of the pattern in a sequence of length N. If the pairs at a distance

k are statistically independent we find PX-X(k) = PX(k) ·  PX(k). Thus the difference

CX-X(k) = PX-X(k) –  PX(k) ·  PX(k)

measures correlations at a distance of k base pairs. A positive peak of the covariance CX-X implies that there are

more X-X pairs at a distance of k than expected by chance. Slow variations of the A + T content within genomes

induce trends in most covariance functions. Consequently, most of the signals in our Figures 1-4 remain positive. In

order to remove the trend we plot in Fig. 5 first order differences of the functions leading to oscillations around
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zero.

All genomes were downloaded from NCBI (www.ncbi.nlm.nih.gov). Correlation functions were calculated with C

programs available from the authors on request.

Results

Since periodicities of 10-11 bp are particularly strong in the genomic sequence of C. elegans  [Widom, 1996; Schieg

and Herzel, 2004] we start with a comprehensive analysis of tetramer periodicities in this organism. As described in

the preceding section we calculate the covariance functions of all 256 tetramers. Due to strand symmetry [Lobry et

al., 1995] reverse complement tetramers such as AGAA and TTCT exhibit similar periodicities. We find a large

variety of periodic signals including period 2, period 3 or period 8. Fig. 1 shows representative examples of such

signals. Note that the amplitudes are fairly small, typically below 0.0001. The interpretation of period 3 is

straight-forward: Due to a nonuniform codon usage [Sharp and Li, 1987; Holste et al., 2000; Gorban et al., 2003]

the 3 positions in the reading frame have different compositions. This subsequently induces periodicities of longer

oligonucleotides as well. For example, a relative high amount of nucleotide A in the second position of the reading

frame implies an enhanced frequency of ATCA tetramers starting at the second position. Other periodicities are

presumable due to repetitive sequences and will not be discussed in detail.

Figure 1: Autocorrelations of tetramer motifs in the genome of C. 
elegans. The upper graph shows period 2 of the TATA motif. In 
the middle graph a strong period 3 and a period 15 are visible 
whereas the lower graph exhibits 8 and 35 bp periodicities.

In the following, we focus on signals with periods around 10-11 bp since signals in phase with the helical period of

DNA can induce curvature and affect bendability [Calladine and Drew, 1987]. Furthermore, periodically placed

motifs might lead to a specific arrangement of DNA-binding proteins. In Figure 2 correlation functions with clear

10-11 bp periodicites are displayed. The amplitudes are somewhat higher than in Fig. 1. The tetramers with

pronounced 10-11 bp periodicities have been compared with known transcription factor binding sites of C. elegans

given in the Transfac database [Wingender et al., 2000]. All consensus sequences of the C. elegans matrices were

compared to the tetramers exhibiting clear 10-11 bp periodicities as in Fig. 2 . However, we did not detected any

clear similarities to core motifs of transcription factor binding sites.

Figure 2: Autocorrelations of motifs AGAA, GAAA and CTAC 
in the genome of C. elegans displaying 10-11 bp periodicities.
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Inspection of many correlation functions revealed that signals are particularly strong if the motifs are A+T rich. This

is consistent with earlier studies in which correlations of the weakly binding nucleotides A and T have been

analyzed as markers of 10-11 bp periodicities [Widom, 1996; Herzel et al., 1999]. Fig. 3 shows the oscillations of

AAAA, TTTT, AAAT and WWWW autocorrelations. The signals are much stronger than all the other periodicities

discussed above. An overrepresentation of poly (A), poly(T) and poly(W) stretches in genomic DNA is well known.

Molecular mechanisms leading to such repetitions are the reverse transcription of poly(A)-tails in eukaryotic

genomes and slippage of DNA-polymerases during replication. In the following we consider different lengths of

poly(W) stretches. It turns out that the 10-11 bp periodicities look quite similar for stretches (W)n with n = 1, 2,...,8

(see Fig. 4). For even longer stretches the number of pairs in a certain distance becomes rather small and thus the

signal-to-noise-ratio decreases. Similar periodicities as in Fig. 4 are visible in correlations of (A)n and (T)n motifs

(n = 1, 2, ...8) albeit the signals are weaker. Figures 3 and 4 represent the main finding of this study. Periodically

placed poly(A/T) stretches along the genomic sequence of C. elegans are a major source of the widely discussed

10-11 bp periodicities.

Figure 3: Poly(A/T) motifs are periodically placed along the 
genomic DNA of C. elegans. Autocorrelations of the motifs 
AAAA, AAAT and WWWW show pronounced 10-11 bp 
periodicities.

Figure 4:Autocorrelation functions reveal 10-11 bp periodicities 
of poly(W) motifs in the genome of C. elegans.

In order to test whether these results apply also to other genomes we compare in Fig. 5 WWWW tetramer

oscillations in different genomes. In order to remove trends and to eliminate period 3 we show the first differences
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of 3 bp running averages. As discussed above the signal is particularly strong for C. elegans (note the different

scales). The oscillations in the other 3 genomes suggest that our findings seem to be relevant to other organisms as

well.

Figure 5: WWWW autocorrelations in the complete genomes of 
C. elegans, D. melanogaster, S. cerevisiae and E. coli.

Discussion

In earlier studies mono- and dinucleotide periodicities have been analysed in detail. In this paper we focused on

periodically placed motifs. A comprehensive scan of all 256 tetramer-signals for the complete genome of C. elegans

was carried out. Observed periodicities could not be traced back easily to core motifs of transcription factor binding

sites. Very pronounced 10-11 bp periodicities have been observed for correlations of poly(A), poly(T) and poly(W)

stretches, i. e. these motifs are found to prefer distances of multiples of the helical period. Some transcription factors

such as TBP, SRF or the C. elegans factors Skn-1, DAF-16 or unc-86 bind to stretches of A/T nucleotides. Thus we

cannot exclude an association of periodic protein binding sites and our observed oscillations.

In our view there is no straightforward interpretation of periodically placed poly(A/T) stretches. One might argue

that dinucleotide correlations simply induce periodicities of longer oligonucleotides. However, in this case the

amplitude of the oscillations should drastically shrink with the length of the motif as discussed in Schieg and

Herzel, 2004. For instance, the amplitude of dinucleotide correlations induced by mononucleotide correlations

should be 8 times smaller. The persisting relatively large amplitudes of the oscillations in Fig. 4 indicate that the

correlations of poly(A/T) stretches constitute the primary signal that in turn lead to dinucleotide correlations

described in earlier studies.

The strength of the poly(A/T)-signals in Figures 3 and 4 is related to the overrepresentation of poly(A/T) stretches

in eukaryotic genomes. For example, the motif lexicon [Dyer et al., 2004] indicates that AAAAAA hexamers in

intergenic regions of C. elegans are 8 times more frequent than expected by chance (see

http://genomics.wheatoncollege.edu/cgi-bin/lexicon.exe). The mechanisms leading to poly(A/T) sequences are

well-known (reverse transcription of poly(A) tails, slippage of polymerases). It is, however, an open question how

these processes relate to the observed 10-11 bp periodicities. The excess of poly(A/T) sequences is particularly

strong in non-coding DNA. Interestingly, Dlakic et al., 2004, found that 10-11 bp periodicities are much stronger in

non-coding DNA as well.

Even though DNA curvature and bendability models are typically based on dinucleotides [Calladine and Drew

1987; Goodsell and Dickerson, 1994] it is known that poly(A) sequences induce curvature (see e. g. the review by

Olson and Zhurkin, 1996). Electrophoretic mobility studies revealed that A tracts in phase with the helical period

induce large curvature [Haran et al., 1994]. Thus periodically placed poly(A/T) stretches found in this paper might

support the optimal topology of genomic DNA.
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