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ABSTRACT

Motivation: Large-scale mappings of protein–protein interactions

have started to give us new views of the complex molecular

mechanisms inside a cell. After initial projects to systematically map

protein interactions in model organisms such as yeast, worm and fly,

researchers have begun to focus on the mapping of the human

interactome. To tackle this enormous challenge, different

approaches have been proposed and pursued. While several

large-scale human protein interaction maps have recently been

published, their quality remains to be critically assessed.

Results: We present here a first comparative analysis of eight

currently available large-scale maps with a total of over 10 000

unique proteins and 57000 interactions included. They are based

either on literature search, orthology or by yeast-two-hybrid assays.

Comparison reveals only a small, but statistically significant overlap.

More importantly, our analysis gives clear indications that all

interaction maps imply considerable selection and detection

biases. These results have to be taken into account for future

assembly of the human interactome.

Availability: An integrated human interaction network called

Unified Human Interactome (UniHI) is made publicly accessible at

http://www.mdc-berlin.de/unihi.

Contact: m.futschik@biologie.hu-berlin.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Protein–protein interactions are essential for a wide range

of cellular processes and form a network of astonishing

complexity. Until recently, our knowledge of this complex

network was rather limited. The emergence of large-scale

protein–protein interaction maps has given us new possibilities

to systematically survey and study the underlying biological

system. First attempts to collect protein–protein interactions on

a large scale were initiated for model organisms such as

S.cerevisiae, D.melanogaster and C.elegans (Gavin et al., 2002;

Giot et al., 2003; Ito et al., 2001; Li et al., 2004; Uetz et al.,

2000). Evidently, the generated interaction maps offered a rich

resource for systematic studies of molecular networks.

After these initial efforts, the focus has moved towards

deciphering the human interactome. Recently, the first

large-scale human protein interaction networks have been

constructed using alternative strategies. Most currently avail-

able human interaction maps can be divided into three classes:

(i) maps obtained from literature search (Bader et al., 2001;

Peri et al., 2003; Ramani et al., 2005), (ii) maps derived from

interactions between orthologous proteins in other organisms

(Lehner and Fraser, 2004; Brown and Jurisica 2005; Persico
et al., 2005) and (iii) maps based on large scans using yeast-two-

hybrid (Y2H) assays (Rual et al., 2005; Stelzl et al., 2005).

All of these different mapping strategies have their obvious

advantages as well as disadvantages. For example, Y2H-based

mapping approaches offer rapid screens between thousands of

proteins, but might be compromised by large false-positive

rates. The extent, however, how much the resulting interaction

maps are influenced by the choice of mapping strategy, is less

clear. Thus, it is important to critically assess and compare
quality and reliability of produced maps.

For yeast interaction maps, several of such critical

comparisons have been performed (Bader and Hogue, 2002;
Reguly et al., 2006; von Mering et al., 2002). They revealed

a surprising divergence between different interaction maps.

Such comparison is still lacking for human protein interaction

maps despite their expected importance for biomedical research

(Goehler et al., 2004). Therefore, we compared several currently

available large-scale interactions maps regarding their concur-

rence and divergence. We assess especially potential selection

and detection biases as they might interfere with future
applications of these maps.

2 MATERIALS AND METHODS

2.1 Assembly of protein–protein interaction maps

To evaluate the different mapping approaches listed above, we selected

eight publicly available large-scale interaction maps: three literature-

based, three orthology-based and two Y2H-based maps. We restricted

further our analysis to binary interactions in order to compare

Y2H-based maps directly with the remaining interaction maps.

Two literature-based interaction maps were derived from the

Human Protein Reference Database (HPRD) and Biomolecular

Interaction Network Database (BIND) (Bader et al., 2001; Peri et al.,

2003). These manually curated databases are mainly based on

literature reviews performed by human experts. At the time of analysis,

interactions included in these databases were predominantly

from small-scale experiments. As third literature-based interaction

map, we used the set of interactions assembled by Ramani and

co-workers using a text-mining approach (Ramani et al., 2005).*To whom correspondence should be addressed.
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As HPRD and BIND, it is based on literature, but computationally

generated. In our study, we will refer to it as the COCIT map.

The first orthology-based human protein interaction map was

proposed by Lehner and Fraser (2004). Interactions included were

predicted based on interactions observed between orthologous proteins

in yeast, worm and fly. We used only interactions that were assigned to

core map by Lehner and Fraser, as these were identified with high

confidence. Besides this map (here referred to as the ORTHO map),

we included two alterative orthology-based large-scale maps from

the Online Predicted Human Interaction Database (OPHID) and

HOMOMINT database (Brown and Jurisica, 2005; Persico et al., 2005).

We extracted from the two databases only the interactions that

were based on orthology assignment to ensure conformity of the

resulting maps.

The Y2H-based interaction maps included in our comparison were

generated in the recent large-scale scans (Rual et al., 2005; Stelzl et al.,

2005). We will refer to these maps as MDC-Y2H and CCSB-H1 in our

study. Although both scans are based on Y2H assay, considerable

differences exist with regard to experimental procedures.

To enable comparison, all proteins were mapped to their

corresponding EntrezGene ID. The number of proteins that could

not be mapped can be found in the Supplementary Materials. For

efficient computational analysis, we converted all interaction maps into

graphs using the Bioconductor graph package (Balasubramanian et al.,

2004; Carey et al., 2005; Gentleman et al., 2004).

2.2 Overlap of interaction maps

Protein interaction maps are formed by both their proteins and

interactions included. Comparison of the proteins in different

maps is based on the following procedure: Given the sets of

proteins (PA,PB) in map A and B, their intersection is

PAB ¼ PA \ PB. To facilitate assessment, the intersection

was normalized with regard to the total number of proteins in

A or B (PA
AB ¼ jPABj=jPAj; P

B
AB ¼ jPABj=jPBj where |P| is the number

of proteins in set P). Thus, the normalized intersection is simply

the percentage of proteins that can be found in the other map. In our

study, we will refer to the average of PA
AB and PB

AB as the protein overlap

Oij between A and B, i.e. Oij ¼ 0:5 � ðPA
AB þ PB

ABÞ:

Interactions in different maps were similarly compared.

For normalization of the intersections, however, only the number

of interactions between common proteins is used. This avoids

confounding the interaction overlap with the protein overlap, as

otherwise a small protein overlap would always lead to a small

interaction overlap. Thus, the interaction overlap is defined as

the average percentage of shared interactions between common

proteins.

Although intuitive, the described measure for interaction overlap

has the drawback, that it only assesses concurrence of the observed

interactions, but not of missing interactions. To evaluate the

concurrence of maps for both observed as well as missing interactions,

we used a log likelihood ratio (LLRAB) score (Lee et al., 2004).

The LLR provides a similarity measure for two sets of interactions

(A,B). It is defined as

LLRAB ¼ ln
PðA jBÞ

PðA j�BÞ

where P(A |B) is the probability of observing an interaction in A

conditioned on observing the same interaction in B and, P(A |�B) is the

probability of observing an interaction in A conditioned on not

observing the same interaction in B, respectively. Note, that we counted

again only (missing) interactions between proteins that are included in

both A and B. To obtain a reciprocal measure for similarity, we define

here LLR (A,B)¼ 0.5 � (LLRABþLLRBA). For highly similar inter-

action networks, LLR produces large scores. For absence of similarity,

the LLR score is zero. The latter is the case if random interactions

networks are compared.

In addition to the LLR score, we used two permutation tests to

stringently assess the statistical significance of observed concurrence

of interactions (Balasubramanian et al., 2004). Details regarding these

tests can be found in the Supplementary Materials.

2.3 Gene ontology analyses

Protein interaction maps can be compromised by several types

of biases. For example, selection bias arises if certain protein

categories are over- or underrepresented in a chosen map. To assess

stringently the significance of such potential biases, we utilized Fisher’s

exact test (see Supplementary Materials). Since we tested simulta-

neously for multiple gene ontology (GO) categories, obtained P-values

were converted to false discovery rates applying the Benjamini–

Hochberg procedure (Benjamini and Hochberg, 1995). As reference,

the set of all proteins tested for interactions could be used. However,

such sets are explicitly known only for Y2H-based maps comprising

the proteins in a matrix screen. For literature- and orthology-

based maps, these sets are not available. Hence, we used the set

of all genes annotated in GO as reference to facilitate direct

comparison.

We also assessed whether interactions between protein classes

were overrepresented. We determined the number of interactions kmn

between proteins of GO category m and proteins of GO

category n. Log2-odds were calculated to assess deviation of the

observed number of interactions kmn with the number k0mn of

interactions expected for randomized networks:

LODmn ¼ log2
kmn

k0mn

Randomized networks had the same number of proteins

and interactions as the corresponding maps and conserved connectivity

of proteins (number of interactions per protein). Note that the analysis

presented here is based on the third GO level. This might appear

somewhat arbitrary, but similar results were obtained for GO levels two

to five.

Alternatively, we can evaluate the tendency that proteins of similar

function interact. Although difficult to define rigorously, similarity

of function may be approximated by the following procedure

(Jansen et al., 2003): After mapping proteins to their GO terms

(categories), their functional similarity is determined by the positions of

corresponding GO terms within the GO graph. Similar GO terms are

expected to be located in proximity to each other. Measuring the shared

paths to the GO terms (from the root term), we would expect that

similar GO terms have larger shared paths than unrelated GO terms.

Thus, if proteins of similar function tend to interact in a network,

the average shared path lengths will be larger than random networks.

To test the significance, we compared therefore the distribution

of shared path lengths to those measured for randomized

networks. Note that we counted the largest shared path length in case

of multiple GO assignments for proteins. Details can be found in

Supplementary Materials.

2.4 Integration of protein–protein interaction maps

Although not discussed in detail here, the comparison of interaction

maps can also be regarded as first step towards the compilation

of an integrated human interactome. A more complete description of

our efforts to combine interaction maps can be found in a

separate publication (Chaurasia et al., 2007). We like to note that

the integrated human interaction network called Unified

Human Interactome (UniHI) is made publicly accessible at

http://www.mdc-berlin.de/unihi.
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3 RESULTS

In total, we were able to map 57 095 interactions between

10 769 proteins uniquely identified by the corresponding

EntrezGene IDs (Table 1). The size of the interaction

maps varied between 2754 (CCSB-H1) and 15 658 (HPRD)

interactions. Proteins had an average degree of 2.9–7.8

which lies well within the range of previous estimates of 3–10

interactions per protein (Bork et al., 2004).

3.1 Common proteins and interactions

We examined first how many proteins and interactions

were common to the different maps in our comparison

(Fig. 1). We found that a large part (60%) of all proteins can

be found in at least two maps. The number of proteins

included in all eight maps, however, is diminishingly small:

Only 10 proteins (i.e. 0.1% of all proteins) fulfill this criterion.

Even more striking were the small numbers of

common interactions. The vast majority of interactions (85%)

are cataloged in only a single map. No interaction can be found

in six or more maps; and just eight interactions are common

to five maps. Nevertheless, graphical representation shows

that the overall network does not disintegrate into separate

sub-networks (Fig. S1).

3.2 Protein overlap

To investigate whether some maps tend to share more proteins

than others, we calculated the protein overlap for each pair

of maps (Table S2). We detected considerable variation of

protein overlap ranging from 16 to 58%. Comparison of

overlaps gave us first indications that maps could be ordered

into distinct groups. To examine this possibility, a clustering

approach was applied. First, we converted protein overlaps

Oij (between maps i and j) into distances �ij defined as

�ij¼ 1�Oij. Thus, maps having large protein overlap are

assigned a small distance between each other. After conversion,

the interaction maps were hierarchically clustered. The resulting

cluster structure showed a clear pattern (Fig. 2A): Maps are

grouped in accordance with the mapping approach used for

their generation. We obtained two clusters including either

literature-based or orthology-based map. Y2H-based maps

formed own clusters: The CCSB-H1 has the most distinguished

set of proteins, whereas MDC-Y2H is placed closer to the

remaining maps. These observations indicate that all mapping

approaches show their own characteristic preference for proteins

included or, in others words, a prominent selection bias.

We verified this conjecture by testing systematically

for over- and underrepresentation of protein categories in

interaction maps. The categories used were based on GO

Table 1. List of compared human protein–protein interaction maps

Map Reference P I Dav Method

MDC-Y2H Stelzl et al. (2005) 1703 3186 3.7 Y2H-ASSAY

CCSB-H1 Rual et al. (2005) 1549 2754 3.5 Y2H-ASSAY

HPRD Peri et al. (2003) 5908 15 658 5.2 LITERATURE REVIEW

BIND Bader et al. (2001) 2677 4233 2.9 LITERATURE REVIEW

COCIT Ramani et al. (2005) 3737 6580 3.5 TEXT MINING

OPHID Brown and Jurisica (2005) 2284 8962 7.8 ORTHOLOGY

ORTHO Lehner and Fraser (2004) 3503 9641 5.4 ORTHOLOGY

HOMOMINT Persico et al. (2005) 2556 5582 4.2 ORTHOLOGY

The number of proteins P and interactions I result after mappings of proteins to their corresponding EntrezGene ID. Dav denotes the average degree of proteins.
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Fig. 1. Number of proteins (A) and interactions (B) common to multiple maps. The x-axis shows the number of maps in which proteins or

interactions are included.
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that currently represents the most comprehensive system of

annotation for the human genome (Ashburner et al., 2000).

GO assigns defined categories to genes according to their

molecular function (MF), biological process (BP) or cellular

component (CC). First, we tested whether proteins of

MF categories are overrepresented in maps using Fisher’s

test (FDR¼ 0.01). As reference, the set of all annotated

human genes in GO was used. The results of the analysis

can be found in Tables S7–S12 in the Supplementary

Materials. Most maps showed significant enrichment for

proteins involved in nucleotide binding (all maps except

CCSB-H1) and protein binding (all except ORTHO).

Likewise, all maps were found to be enriched by proteins

related to metabolism and cell cycle (BP categories) or located

in the nucleus (CC category). Orthology-based maps

showed additional enrichment in RNA-binding proteins.

Interestingly, signal transducers are significantly underrepre-

sented in Y2H- and orthology-based maps, whereas they

are significantly overrepresented in literature-based maps.

Whereas the reasons for the observed underrepresention are

less clear, a possible explanation for the overrepresentation

in literature-based maps is the existence of an inspection bias

towards ‘popular’ signaling proteins in the literature.

Remarkably, we detected a highly significant depletion of

membrane proteins in all maps including pharmaceutically

important classes as the G-protein-coupled receptors.

3.3 Concurrence of interactions

Next, we analyzed the shared interactions between different

maps. The overlap of interactions between common proteins

ranges from 1.8 to 45% (Table S3). Maps were subsequently

clustered based on the interaction overlap. As before,

characteristic clusters were obtained (Fig. S2). However,

the detected clusters were differently composed compared to

the clusters based on protein overlap. CCSB-H1 was assigned

to the cluster of literature-based maps. In contrast, MDC-Y2H

was located separately displaying the weakest similarity to

remaining maps. Notably, using the quality score developed

for MDC-Y2H resulted in an increase of interaction overlap

with most other maps (Supplementary Materials).

For an additional assessment of similarity between maps,

the LLR was calculated for each pair (Table S4). It ranged from

1.8 (MDC-Y2H–OPHID) to 6.4 (BIND–HPRD) having an

average value of 4.6. For all comparisons, it was notably

larger than zero, which is the expected value for comparison

of random maps. This signifies that the observed concurrence

of interaction maps did not occur merely by chance despite

being rather small. To confirm this finding, we applied

two permutation tests (described in Section 2) for pair-wise

comparison of graphs. These results showed that the observed

overlap of interactions is highly significant for all comparisons

(P50.01).

Inspection of the LLRs also suggested that the interaction

maps can be divided into distinct groups. As before,

we subsequently clustered interaction maps to detect common

tendencies. The distance was defined as the reciprocal LLR.

Similar maps score a large LLR resulting in a small distance.

The derived clustering resembles closely the results obtained

for interaction overlap pointing to a potential detection bias
for the maps compared (Fig. 2B). The clustering results

also demonstrate that maps derived by literature search or
orthology are more convergent. This does not seem to be the

case for the Y2H-based approach. The functional analysis
of a potential detection bias revealed less clear results

(Supplementary Materials).

3.4 Conservation of connectivity of proteins across maps

The question was addressed whether the connectivity
of proteins is conserved across interaction maps. To measure

the conservation of connectivity between pairs of networks,
we correlated the number of interactions of proteins in the

two networks using Spearman correlation for the set of
common proteins. High correlation between two maps signifies

that the interaction-rich (interaction-poor) proteins in one
map are also interaction-rich (interaction-poor) in the other

map. An overall weakly positive correlation (0.20) ranging
from �0.07 to 0.57 was recorded (Table S6). Only 6 out of 28

pair-wise comparisons resulted in correlation coefficients larger
than 0.3. Notably, all of these six moderately positive

correlations found between maps were generated by similar
approaches. Connectivity was less conserved between maps

derived by different methods. This is also reflected in a
subsequent cluster analysis based on the Spearman correlation.

The interaction maps group according to their method of
generation (Fig. S3).

3.5 Coherency of interaction maps

Finally, we examine the functional coherency of maps.
The observation that interacting proteins tend to have

common functions has previously been utilized for assessing
the quality of interaction maps as well as for de novo prediction

(Schwikowski et al., 2000; von Mering et al., 2002). To test
whether current human interaction maps also display such

functional coherency, we employed the gene annotations
available in GO. We followed two alternative approaches:

First, we assessed the similarity of GO annotations of
interacting proteins. In case the interacting proteins have

similar functions, their MF annotations should be more
similar than expected for random pairs of proteins. This can

be measured by the shared path length of GO categories
for interacting proteins (see Section 2): Assuming a

strong correlation between function and interaction
(i.e. large functional coherency), we would observe that

short shared path length are less likely and long shared path
length are more likely than expected. The results of this analysis

are shown in Figure 3. Indeed, all maps follow this pattern.
However, considerable differences can be observed.

COCIT showed the largest functional coherency of all
maps whereas MDC-Y2H and OPHID showed only modest

coherency. A similar analysis was performed for maps
with regard to shared process (BP) and location (CC) of

interacting proteins. Here, all maps displayed large coherency
with only minor differences between maps (Fig. 3).

An alternative approach to study the coherency of
interaction maps is the examination whether interacting

proteins share a common location. It is based on inspection

M.E.Futschik et al.
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of the interaction matrix as described in Section 2. A similar

strategy was introduced by von Mering and co-workers

counting the interactions within and between functional

categories for yeast interaction maps (von Mering et al.,

2002). If only interactions of proteins of the same category

occur, a diagonal pattern emerges in the corresponding

interactions matrices. However, this approach assumes

that proteins are assigned to a single category and not to

multiple categories as it is frequently the case for GO

annotations. Thus, we modified the approach by comparing

the observed interaction matrices to matrices of the corre-

sponding randomized networks. Figure 4 displays the log odds

for interactions between CC categories of the third level

whereas figures for MF and BP can be found in

Supplementary Materials (Figs S4 and S5). Interestingly,

some compartments (e.g. cytoskeleton) are enriched by internal

interactions independently of the map chosen. Generally,

however, literature-based networks displayed most prominently

enrichment of interactions within proteins of the same

component. Less clear patterns for enrichment were found for

MDC-Y2H and OPHID. This result seems to contradict the

previous observation that the coherency for location is similar

in all interaction maps (Fig. 3). However, it is important to note

that the interaction matrix approach only assesses the

coherency at one particular level of the GO hierarchy. This is

contrasted by the previous approach that integrates over all

levels. Moreover, overrepresentation of interactions between

different categories might not always derive from poor quality
of interaction maps, but may point to true biological coupling

of CCs. For example, the repeatedly observed enrichment in

protein interactions between endomembrane and plasma
membrane most likely reflects the close biological connection

of both membrane systems.

4 DISCUSSION AND CONCLUSIONS

Large-scale protein–protein interaction maps promise to have
a considerable impact on the revelation of molecular networks.

Similar to fully sequenced genomes serving nowadays as basis
for genomics, large-scale maps of the interactome might become

the foundation for systematic analysis of cellular networks.

However, quality and reliability of large-scale human interaction
maps have to be critically assessed. Therefore, we presented here

a first comparison of eight currently available large-scale

interaction maps. Our comparison is distinguished from
previous studies, as it includes all three main approaches

currently used for assembly of the human interactome. Since

it is crucial to know their strengths and weaknesses, our aim was
to examine coherency within maps as well as concurrency

between maps.
The analysis showed that current maps have only

a small, but statistically significant overlap. Whereas most

Fig. 2. Hierarchical clustering of maps based on protein overlap (A) and log likelihood ratio LLR (B) as defined in Section 2. The matrices display

the protein overlap, respectively the LLR between all possible pairs of maps. Their numerical values are represented according to color bars at the

bottom. On top and right side of each matrices, the corresponding dendrograms are shown. Clustering of protein overlap was based on the distance

� between map i and j defined as�ij¼ 1�Oij where Oij is protein overlap between maps i and j. For clustering of LLR, the distance � was defined as

�ij¼ 1/LLR(Ii, Ij), where Ii and Ij are the sets of interactions included in map i or j. For both cluster analysis, average linkage was used.

Comparison of human protein–protein interaction maps

609



proteins can be found in multiple maps, this is only

the case for 510% of the interactions making the

maps largely complementary. The small number of

common interactions is somewhat surprising considering

the large number of shared proteins, but resembles

similar observations in previous comparisons for yeast

(Bader et al., 2001; Bader and Hogue, 2002; von Mering

et al., 2002).

Fig. 3. Assessment of coherency based on GO annotations for molecular function (MF), biological process (BP) and cellular component (CC).

For interacting proteins, the shared path lengths of GO categories were calculated as described in Section 2. The figures show the log2 odds for the

observed path lengths with respect to path lengths derived for random networks. Log2 odds are plotted as function of shared path lengths.

Fig. 4. Cellular components of interacting proteins. Pairs of interacting proteins were mapped to the pairs of cellular components to which the

proteins are assigned in gene ontology. The plots display the log2 odds ratios of the observed distribution compared to the distribution obtained for

randomized networks with conserved degree distribution. Categories of the third level of GO were chosen. The following abbreviations were used:

Nu—Nucleus, RC—Ribonucleoprotein complex, Cs—Cytoskeleton, Cp—Cytoplasm, IM—Intrinsic to membrane, EM—Endomembrane system,

OM—Organelle membrane and PM—Plasma membrane. For simplicity, only GO categories are shown including more than 2% of the total number

of proteins.
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Naturally, the question arises why the number of common
interaction between different current maps is so small.
To reveal potential causes for the small overlap, we used
different measures to assess the similarity of interaction maps.

For literature and orthology-based maps, our study showed
that maps were generally more concurrent if they are based
on the same method. Less similarity was found between

the Y2H-based maps. Strong sampling and detection
biases could be linked to the different mapping approaches
demonstrating their considerable impact on the resulting maps.

But why do the overlaps remain small even for maps
derived by similar approach? For example, only 38–40% of
interactions are shared between orthology-based maps.

Possible causes are the use of different data sets and methods
for prediction of interactions. Although both HOMOMINT
and OPHID are based on the approach by Lehner and
Fraser, some important deviations exist: For OPHID, inter-

actions from mouse were utilized and a different mapping
model to identify human orthologs was applied. For
HOMOMINT, information about the domain architecture

was additionally used to predict human interactions based on
interactions in various organisms stored in the molecular
interaction database. Likewise, literature-based maps have only

14–36% of their interactions in common. This might result
from inspection bias, such as the focus of HPRD towards
disease-related genes. Also, COCIT does not distinguish
between physical and functional interactions and lacks self-

interactions due to the computational approach taken.
Nonetheless, our analysis also showed that most interaction

maps display a high internal coherency regarding function,

process and location of proteins. This result gives justification
for future de novo annotation of proteins based on interaction
maps. The observed differences in functional coherency also

suggest that a differentiation between interaction maps
might be favorable for future prediction of protein function.
The attachment of larger weights to interactions from maps

of large coherency might improve the prediction accuracy.
However, we like to note that the use of GO for assessment
might lead to overestimation of the coherency of literature-
based maps, as GO annotations are frequently also based

on literature reviews and, thus, do not represent a truly
independent benchmark set. In this case, the apparent lack
of coherency in other maps could be interpreted that

these maps may provide more novel information about the
observed interactions.
In conclusion, this study is aimed to provide a first

groundwork for future integration of large-scale human
interaction maps (Chaurasia et al., 2007). Combination
of different maps can be expected to become great assets.
Nevertheless, researchers should be aware of the characteristics

of the underlying mapping approaches.
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