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Protein interactions constitute the backbone of the cellular machinery in living systems. Their 
biological importance has led to systematic assemblies of large-scale protein-protein interaction 
maps for various organisms.  Recently, the focus of such interactome projects has shifted towards the 
elucidation of the human interaction network. Several strategies have been employed to gain 
comprehensive maps of protein interactions occurring in the human body. For their efficient 
analysis, graph theory has become a favourite tool. It can identify characteristic features of 
interaction networks which can give us important insights into the general structure of the underlying 
molecular networks. Although such graph-theoretical analyses have delivered us a variety of 
interesting results, their general validity remains to be demonstrated. We therefore examined whether 
independently assembled human interaction networks show common structural features. 
Remarkably, while some general graph-theoretical features were found, we detected a strong 
dependency of network structures on the method used to generate the network.  Our study strongly 
indicates that graph-theoretical analysis can be severely compromised by the observed structural 
divergence and reassessment of earlier results might be warranted.  
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1. Introduction 

As protein interactions are essential for cellular processes, their systematic identification 
has become an important target in molecular biology. Initial efforts to assemble 
comprehensive lists of interactions have been undertaken for model organisms such as S. 
cerevisiae, D. melanogaster and C. elegans (1-3). Recently, the elucidation of the human 
protein interactome (i.e. the complete set of protein interactions occurring in the human 
body) has become the major focus for many research groups (4-10).  A variety of 
experimental and computational strategies to map the human interactome have been 
pursued. All of these approaches have their unique strengths and weaknesses. Currently, 
the major three strategies (with their advantages and disadvantages) are as follows (11):  
 



M.E. Futschik et al.                                       Genome Informatics, Vol. 18, 141-151, 2007                                                

142 

• Literature-based interaction maps. Protein interactions are derived from literature 
searches performed either by human experts or computational text-mining 
approaches. Advantages: i) This approach is not biased towards a specific 
experimental technique, ii) interactions are measured under a variety of conditions, 
and iii) maps include interactions that require post-transcriptional modifications 
specific to humans. Disadvantages: i) The false positive rates are difficult to 
estimate, and ii) the approach is highly biased towards proteins which are currently 
popular research targets. 

 
• Orthology-based interaction maps. This approach is based on the assumption that 

protein interactions are evolutionarily conserved. Thus, interactions between 
proteins detected in other organisms are extrapolated to their human orthologs. 
Advantages: i) The method is entirely computational, enabling rapid and cost-
effective construction of human interaction networks, and ii) it gains power through 
the abundance of interaction data for model organisms such as S. cerevisiae, C. 
elegans, D. melanogaster and M. musculus. Disadvantages: i) It is purely predictive, 
and ii) a considerable rate of false positives can arise through two types of errors: 1) 
the mapping to wrong orthologs, and 2) interactions are not conserved.  

 
• Yeast two-hybrid (Y2H)-based maps. The Y2H method comprises on a screening 

approach using a set of modified proteins. Proteins are fused either to DNA-binding 
or transcriptional activator domains. Both types of fused proteins are subsequently 
co-expressed in yeast. If interaction occurs, a functional transcription factor (such as 
GAL4) is formed and a reporter gene is transcribed. Advantages: i) The Y2H assay 
enables systematic and rapid large-scale screening for interaction, ii) it is not biased 
towards known interactions, and iii) it can detect transient interactions. 
Disadvantages: i) Interactions are measured outside native surrounding (except for 
yeast proteins) and thus are unrelated to any physiological function, and ii) assayed 
proteins need to be located in the nucleus.  

 
All of these mapping efforts have generated huge networks. For their analysis, graph 

theory has become an important tool. It has been applied to a variety of complex 
networks in various fields ranging from the World Wide Web to social networks. The 
aim of graph-theoretical analysis is the identification of characteristic network features 
and properties. In the field of systems biology, graph-theory has become a method of 
choice for the study of large interaction networks (12). Although the notation of 
molecular networks as simple graphs is clearly an oversimplification, the use of graph-
theoretical tools has been demonstrated to be very useful for the general understanding of 
disease processes (13), internal network structures (14) and evolutionary processes (15).   

Although the application of graph-theory to interaction networks has produced many 
intriguing findings, it is not clear if these results are of general validity or specific to the 
analysed network. We therefore critically examined whether independently assembled 
human interaction networks show common structural features.  
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2. Methods and Materials 

2.1. Construction of Protein-Protein Interaction Maps 

To assess whether current human interaction networks display common structures, we 
have selected eight interaction maps representing the three described approaches. These 
networks were subsequently scrutinized for common as well as differing structural 
features.  

Two literature-based networks were assembled based on data from the Human 
Protein Reference Database (HPRD) and Biomolecular Interaction Network Database 
(BIND) (4,8). For construction of a third literature-based network (termed here as 
COCIT), we used a published list of interacting proteins derived by text-mining (16). 
Orthology-based networks were generated using data from the Online Predicted Human 
Interaction Database (OPHID) and HOMOMINT database (5,7).  In addition, we 
selected an alternative collection of inferred interactions to build a third orthology-based 
interaction network (termed here as ORTHO) (6). Finally, two Y2H-based networks 
were derived from results of recently published Y2H screens for human protein 
interactions  (9,10).  

Note that all networks were independently assembled. For comparison, proteins 
were mapped to their corresponding EntrezGene IDs. The sizes of the generated 
networks are displayed in table 1. Further details can be found in references (11,17).  
 

 

2.2. Graph-theoretical measures 

For analysis, protein interaction maps were converted to graphs with proteins as nodes 
and interactions as links or edges. The resulting graphs can be characterized using a 
variety of graph-theoretical measures:  
The most fundamental characteristic of a node in a graph is its number of links to other 
nodes. It is referred as the degree of a node. The degree distribution P(k) gives the 
fraction of proteins with k interactions in the total network. It can be used to distinguish 
different network classes. For example, the degree distribution follows a Poisson 
distribution for random networks of Erdös-Rényi type. Such networks have a typical 
node degree. In contrast, the power-law distribution (P(k) ~ k-γ) is characteristic for the 
class of scale-free networks. The scale-free network architecture has been associated 
with robustness against failure of single components (12). A hallmark of scale-free 
topology is the appearance of so called network hubs i.e. highly connected nodes. The 
exponent γ determines the role of the hubs in the network. The smaller γ is, the larger the 
fraction of nodes connected to hubs is in the network.  
The shortest path length between two nodes is defined as the minimum number of links 
included in the path between the nodes. For calculation, we used the shortest path 
algorithm by Dijkstra (18).The mean average path length of a network is the average 
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Table 1: Human protein interaction networks compared in this study. The following abbreviations were used: P- 
number of mapped proteins, I - number of mapped interactions, AD – average degree, NN- Number of sub-
networks  that include more than 1000, between 1000 and 101, between 100 and 10 or between 10 and  1 
proteins, MPL - mean path length, D - network diameter, γ – degree exponent, CC - average clustering 
coefficient.  

 
shortest path lengths between all possible pairs of proteins. The network's diameter is the 
maximum shortest path between two nodes included. To measure the local tendency of 
neighbors to be linked, the clustering coefficient can be utilized (12). It is defined as 
C=2n/m(m-1) where n is the number of links between m neighbors. A large clustering 
coefficient indicates that neighbors of a node are likely to interact to each other.  

To avoid artifacts, self-interactions were excluded in the graph-theoretical analysis 
and all calculations were performed based on the largest connected graph for each map. 
The analysis was carried out in the R language using the Bioconductor packages graph 
and GraphAT (19,20). 

2.3. Generation of random graphs  

We assessed the significance of the results by comparison with two background network 
models: i) Random graphs with the same number of nodes and interactions, but without 
conservation of the degree distribution. Interactions were assigned to randomly selected 
pairs of proteins until the random graph had the same number of interactions as the 
original network.   ii) Random graphs with conservation of number of nodes and 
interactions as well as of the degree distribution. To construct such graphs, we started 
with the original network and repeatedly exchanged interactions in a random manner: 
Edges between node A and B (A-B) and between C and D (C-D) will be changed to A-C 
and B-D, if such edges are not present yet. Thus, the degree of A, B, C and D is 
conserved, whereas the connections are changed. 

Network P I AD NN MPL D γ CC Method 

MDC-Y2H 1703 3186 3.7 1/0/38/4 4.9 13 1.63 0.01 Y2H-assay 

CCSB-H1 1549 2754 3.5 1/0/90/27 4.4 12 1.46 0.05 Y2H-assay 

HPRD 5908 15658 5.2 1/0/135/140 5 15 2.44 0.13 Literature 

BIND 2677 4233 2.9 1/3/169/256 5.9 16 1.90 0.17 Literature 

COCIT 3737 6580 3.5 1/7/545/0 5.9 20 2.18 0.43 Literature 

OPHID 2284 8962 7.8 1/3/95/0 4.8 15 1.36 0.23 Orthology 

ORTHO 3503 9641 5.4 1/2/183/9 6.5 17 2.14 0.19 Orthology 

HOMOMINT 2556 5582 4.2 1/0/85/45 5.1 12 2.76 0.07 Orthology 
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Figure 1: Mean path lengths of interaction networks: Black bars correspond to original graphs, dark gray bars 
correspond to random graphs with the same number of proteins and interactions and light gray bars correspond 
to random networks with conserved degree distribution.  Errors bars show the standard deviations derived for 
three independent randomizations. 
 

3. Results 

3.1. Connectivity of networks 

Using graph-theoretical measures, fundamental topological properties of protein 
interaction maps can be compared and characterized. After converting all interaction 
maps to graphs, we analyzed their internal connectivity (table 1). For all graphs, the vast 
majority of proteins were connected in a main network, which appears to be a general 
feature of protein-protein interaction networks, being also observed in other species (1-
3,21). The remaining proteins formed predominantly smaller networks of less than 10 
proteins. Only for BIND, COCIT, OPHID and ORTHO, medium sized networks 
(including 100-1000 proteins) emerged. Whether such separated ‘islands’ are artifacts 
reflecting the fragmentary state of proteins maps or functionally separated units remains 
subject for further research.  

3.2. Small worlds  

A main conclusion of previous studies was that protein interaction networks display 
'small world' properties having small mean path lengths. This is also the case for the 
networks compared here (table 1 and fig. 1). Their mean path length is similar and ranges 
from 4.4 (CCSB-H1) to 6.5 (ORTHO). For most networks, it is smaller than expected for 
the corresponding random graphs.  For all networks, however, the mean path length is 
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Figure 2: Degree distributions. The number of proteins was plotted as a function of the number of neighbors that 
proteins in the interaction maps have.  For all maps, the degree frequencies follow a power-law P(k) ~ k–γ with 
some derivations for HPRD, COCIT, ORTHO and HOMOMINT.  The exponent γ was derived by linear 
regression of the logged data. 
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Figure 3: Mean clustering coefficient of interaction networks. The same representation as in figure 1 was used. 
 
larger than expected for the corresponding random scale-free networks, pointing to the 
existence of internal structures (see also Supplementary Materials). The diameter (i.e. the 
largest path length within a network) ranges noticeably between 12 (CCSB-H1, 
HOMOMINT) and 20 (COCIT). 

3.3. Degree distribution  

An important determinant of a network’s structure is the degree distribution P(k). We 
found that all networks display power-law distribution implying a general emergence of 
hubs (fig. 2). However, some deviations can be observed. Networks derived from BIND, 
OPHID or Y2H-assays followed most closely the power-law distribution, in contrast the 
remaining ones show a relative depletion of interaction-poor proteins. Furthermore, the 
exponent γ varies by a factor of two between networks indicating that the role of hubs 
differs considerably (see section 2.2).  Notably, networks that obey closely the power-
law distribution also tend to have smaller mean path lengths. 

3.4. Modularity 

Cellular networks have been proposed to exhibit modular structure i.e they can be 
divided into separable highly connected sub-networks (12,14). A commonly used 
measure for modularity is the clustering coefficient reflecting the cohesiveness of the 
neighborhood of network nodes. In our analysis, the average clustering coefficient ranges 
remarkably by a factor of almost 50 from 0.01 to 0.45 (fig. 3). The smallest coefficients 
were found for Y2H-based networks; they were similar to the expected values for 
random scale-free networks, leading to the conclusion that the Y2H-based maps do not 
display particularly strong neighborhood cohesiveness. A possible reason could be a 
large number of undetected interactions (false negatives). In contrast, clustering 
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coefficients for literature- and orthology-based networks were considerably larger than 
for the corresponding random networks, implying that these networks are highly 
modular. 

3.5. Hierarchical structure 

Besides the assessment of modularity, the clustering coefficient has been employed to 
study hierarchical modular structures of networks. The concept of hierarchical 
modularity implies that modules themselves are made up by smaller modules. It was 
introduced by Ravasz and co-workers aiming to resolve the apparent contradiction of 
modularity and scale-free structure of networks. In the analysis of metabolic networks, 
they associated a decreasing clustering coefficient for highly connected nodes with 
hierarchical modular organization (14). In such networks, poorly connected nodes (i.e. 
the majority of proteins) are situated in modules and thus have a large clustering 
coefficient. In contrast, hubs connecting these distinct modules display only small 
clustering coefficients. We observed this dependency of clustering coefficient on degree 
for most networks compared (fig. 4).  For orthology-based networks, however, this 
pattern is absent suggesting the lack of a hierarchical structure in these networks.  
Alternatively, large highly connected complexes could result in proteins having both a 
large number of interactions and large clustering coefficient.  
 

4 Discussion and Conclusions 

Graph theory represents an important and popular approach for the analysis of large-
scale interaction networks (12).  It is frequently used to obtain a general characterization 
of molecular networks. It is also of importance for systems biology in revealing modular 
structures which can subsequently be modeled more quantitatively. Nevertheless, results 
of graph-theoretical analyses should be taken with caution, since they are generally based 
on the assumption that the studied network is error-free and complete. This, however, is 
hardly the case for current protein interaction networks. Whereas the effects of sparse 
sampling have been intensively studied, the impact of the method used to generate 
interaction networks has been neglected so far  (22,23). 

Here we presented a first graph-theoretical comparison of major human interaction 
networks. It shows that the method used for the network assembly strongly influence the 
structure of the network. While all interaction networks showed small world properties 
and corresponded to scale-free networks, we detected considerable structural divergence 
regarding their modularity and hierarchical structure.  This observation has to be taken 
into account for an unbiased application of graph theory. General conclusions about the 
structure of the human protein interaction network should therefore be verified against 
potential interference by the chosen assembly method. As many previous analyses of 
network structures are based on single networks, a reassessment of their results might be 
warranted.  
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Figure 4: Clustering coefficient. Plots show the dependence of the clustering coefficient on the degree of 
proteins. The clustering coefficients shown were derived by averaging over all proteins having the same 
degree. The solid line shows the linear fit. 
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Supplementary materials  
 
Supplementary materials can be found at: http://itb.biologie.hu-berlin.de/Members/ 
futschik/ ibsb2007 
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